Equivariant Spectral Triples for Homogeneous Spaces of the Compact Quantum Group Uq(2)

被引:0
作者
Guin, Satyajit [1 ]
Saurabh, Bipul [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Palaj 382355, Gandhinagar, India
关键词
Quantum unitary group; Homogeneous extension; Spectral triples; GNS space; DIRAC OPERATOR;
D O I
10.1007/s11040-022-09432-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study homogeneous spaces U-q(2)/(phi) T and U-q(2)/(psi) T of the compact quantum group U-q (2), q is an element of C \ {0}. The homogeneous space U-q(2)/(phi) T is shown to be the braided quantum group SUq (2). The homogeneous space U-q(2)/(psi) T is established as a universal C*-algebra given by a finite set of generators and relations. Its K-groups are computed and two families of finitely summable odd spectral triples, one is U-q (2)-equivariant and the other is T-2-equivariant, are constructed. Using the index pairing, it is shown that the induced Fredholm modules for these families of spectral triples give each element in the K-homology group K-1 (C (U-q(2)/(psi) T)).
引用
收藏
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1994, Non-Commutative Differential Geometry
[2]  
Blackadar B., 1998, Mathematical Sciences Research Institute Publications, V5
[3]   Characterization of SUq(l+1)-equivariant spectral triples for the odd dimensional quantum spheres [J].
Chakraborty, Partha Sarathi ;
Pal, Arupkumar .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 623 :25-42
[4]   Equivariant spectral triples on the quantum SU(2) group [J].
Chakraborty, PS ;
Pal, A .
K-THEORY, 2003, 28 (02) :107-126
[5]   Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples [J].
Connes, A ;
Dubois-Violette, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (03) :539-579
[6]   Dirac Operators on Quantum Projective Spaces [J].
D'Andrea, Francesco ;
Dabrowski, Ludwik .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (03) :731-790
[7]   The Dirac operator on SUq(2) [J].
Dabrowski, L ;
Landi, G ;
Sitarz, A ;
van Suijlekom, W ;
Várilly, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) :729-759
[8]  
Dabrowski L., 2001, Banach Center Publications, Polish Academy of Sciences-Institute of Mathematics, V61, P49
[9]  
Dabrowski L, 2007, J NONCOMMUT GEOM, V1, P213
[10]  
Guin S, 2021, Arxiv, DOI arXiv:2102.11473