Existence and singularities of solutions to an integrable equation governing short-waves in a long-wave model

被引:2
作者
Fu, Yuxia [1 ,2 ]
Yin, Zhaoyang [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Dongguan Polytech, Dept Math, Dongguan 523808, Peoples R China
关键词
integral equations; wave equations; SHALLOW-WATER EQUATION; HUNTER-SAXTON EQUATION; KORTEWEG-DE-VRIES; GEOMETRIC APPROACH; PEAKON SOLUTIONS; CAMASSA-HOLM; TRANSFORMATIONS; BREAKING; SYSTEMS;
D O I
10.1063/1.3488968
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is concerned with the Cauchy problem of a new periodic integrable equation governing short-waves in a long-wave model. We first establish the local well-posedness for its derivative equation, which correspondingly implies the local existence and multivaluedness of solutions to the model. Then, we obtain a blow up scenario for these solutions. Finally, we show that the equation has strong solutions that develop singularities in finite time. (C) 2010 American Institute of Physics. [doi:10.1063/1.3488968]
引用
收藏
页数:16
相关论文
共 34 条
[1]   The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and dym type [J].
Alber, MS ;
Camassa, R ;
Fedorov, YN ;
Holm, DD ;
Marsden, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (01) :197-227
[2]  
[Anonymous], 1983, APPL MATH SCI
[3]  
Beals D. H., 2001, Appl. Anal., V78, P255, DOI DOI 10.1080/00036810108840938
[4]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[5]   Global solutions of the Hunter-Saxton equation [J].
Bressan, A ;
Constantin, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) :996-1026
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]  
CAO CW, 1990, ACTA MATH SINICA, V6, P34
[8]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[9]  
2-5
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243