Continuity of the SRB entropy of convex projective structures

被引:1
作者
Foulon, Patrick [1 ,2 ]
Kim, Inkang [3 ]
机构
[1] Aix Marseille Univ, CNRS, Soc Math France, CIRM Ctr Int Rencontres Math, Marseille, France
[2] UMR 822, 163 Ave Luminy, F-13288 Marseille 9, France
[3] KIAS, Sch Math, Heogiro 85, Seoul 02455, South Korea
关键词
real projective structure; Sinai-Ruelle-Bowen measure; entropy; METRIC ENTROPY; REGULARITY; SURFACES;
D O I
10.1017/etds.2020.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The space of convex projective structures has been well studied with respect to the topological entropy. But, to better understand the geometry of the structure, we study the entropy of the Sinai-Ruelle-Bowen measure and show that it is a continuous function on the space of strictly convex real projective structures.
引用
收藏
页码:2369 / 2381
页数:13
相关论文
共 50 条
[31]   On the entropy of the convex hull of finite sets [J].
Kyrezi, I .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2393-2403
[32]   Kolmogorov Entropy for Classes of Convex Functions [J].
D. Dryanov .
Constructive Approximation, 2009, 30 :137-153
[33]   Kolmogorov Entropy for Classes of Convex Functions [J].
Dryanov, D. .
CONSTRUCTIVE APPROXIMATION, 2009, 30 (01) :137-153
[34]   An obstruction to the existence of real projective structures [J].
Coban, Hatice .
TOPOLOGY AND ITS APPLICATIONS, 2019, 265
[35]   Meromorphic Projective Structures, Opers and Monodromy [J].
Serandour, Titouan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (13)
[36]   Real projective structures on a real curve [J].
Biswas, Indranil ;
Hurtubise, Jacques .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (03) :341-360
[37]   ON THE FINITENESS OF REAL STRUCTURES OF PROJECTIVE MANIFOLDS [J].
Kim, Jin Hong .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) :109-115
[38]   Branched projective structures with Fuchsian holonomy [J].
Calsamiglia, Gabriel ;
Deroin, Bertrand ;
Francaviglia, Stefano .
GEOMETRY & TOPOLOGY, 2014, 18 (01) :379-446
[39]   Metric entropy of convex hulls in Hilbert spaces [J].
Li, WBV ;
Linde, W .
STUDIA MATHEMATICA, 2000, 139 (01) :29-45
[40]   Ancient low-entropy flows, mean-convex neighborhoods, and uniqueness [J].
Choi, Kyeongsu ;
Haslhofer, Robert ;
Hershkovits, Or .
ACTA MATHEMATICA, 2022, 228 (02) :217-301