Continuity of the SRB entropy of convex projective structures

被引:1
作者
Foulon, Patrick [1 ,2 ]
Kim, Inkang [3 ]
机构
[1] Aix Marseille Univ, CNRS, Soc Math France, CIRM Ctr Int Rencontres Math, Marseille, France
[2] UMR 822, 163 Ave Luminy, F-13288 Marseille 9, France
[3] KIAS, Sch Math, Heogiro 85, Seoul 02455, South Korea
关键词
real projective structure; Sinai-Ruelle-Bowen measure; entropy; METRIC ENTROPY; REGULARITY; SURFACES;
D O I
10.1017/etds.2020.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The space of convex projective structures has been well studied with respect to the topological entropy. But, to better understand the geometry of the structure, we study the entropy of the Sinai-Ruelle-Bowen measure and show that it is a continuous function on the space of strictly convex real projective structures.
引用
收藏
页码:2369 / 2381
页数:13
相关论文
共 50 条
[21]   Infimum of the metric entropy of hyperbolic attractors with respect to the SRB measure [J].
Hu, Huyi ;
Jiang, Miaohua ;
Jiang, Yunping .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 22 (1-2) :215-234
[22]   Entropy formula and continuity of entropy for piecewise expanding maps [J].
Alves, Jose F. ;
Pumarino, Antonio .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (01) :91-108
[23]   Algebraic entropy for smooth projective varieties [J].
Shuddhodan, K., V .
MATHEMATICAL RESEARCH LETTERS, 2022, 29 (03) :851-870
[24]   Symbolic extensions and continuity properties of the entropy [J].
Burguet, David .
ARCHIV DER MATHEMATIK, 2011, 96 (04) :387-400
[25]   Symbolic extensions and continuity properties of the entropy [J].
David Burguet .
Archiv der Mathematik, 2011, 96 :387-400
[26]   The definability criteria for convex projective polyhedral reflection groups [J].
Kanghyun Choi ;
Suhyoung Choi .
Geometriae Dedicata, 2015, 175 :323-346
[27]   Correlation of the renormalized Hilbert length for convex projective surfaces [J].
Dai, Xian ;
Martone, Giuseppe .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (09) :2938-2973
[28]   Polynomial cubic differentials and convex polygons in the projective plane [J].
Dumas, David ;
Wolf, Michael .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (06) :1734-1798
[29]   The definability criteria for convex projective polyhedral reflection groups [J].
Choi, Kanghyun ;
Choi, Suhyoung .
GEOMETRIAE DEDICATA, 2015, 175 (01) :323-346
[30]   (Semi)continuity of the entropy of Sinai probability measures for partially hyperbolic diffeomorphisms [J].
Carvalho, M. ;
Varandas, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) :1123-1137