Continuity of the SRB entropy of convex projective structures

被引:1
|
作者
Foulon, Patrick [1 ,2 ]
Kim, Inkang [3 ]
机构
[1] Aix Marseille Univ, CNRS, Soc Math France, CIRM Ctr Int Rencontres Math, Marseille, France
[2] UMR 822, 163 Ave Luminy, F-13288 Marseille 9, France
[3] KIAS, Sch Math, Heogiro 85, Seoul 02455, South Korea
关键词
real projective structure; Sinai-Ruelle-Bowen measure; entropy; METRIC ENTROPY; REGULARITY; SURFACES;
D O I
10.1017/etds.2020.48
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The space of convex projective structures has been well studied with respect to the topological entropy. But, to better understand the geometry of the structure, we study the entropy of the Sinai-Ruelle-Bowen measure and show that it is a continuous function on the space of strictly convex real projective structures.
引用
收藏
页码:2369 / 2381
页数:13
相关论文
共 50 条
  • [1] On the continuity of the SRB entropy for endomorphisms
    Alves, Jose F.
    Oliveira, Krerley
    Tahzibi, Ali
    JOURNAL OF STATISTICAL PHYSICS, 2006, 123 (04) : 763 - 785
  • [2] On the Continuity of the SRB Entropy for Endomorphisms
    José F. Alves
    Krerley Oliveira
    Ali Tahzibi
    Journal of Statistical Physics, 2006, 123 : 763 - 785
  • [3] Statistical Stability and Continuity of SRB Entropy for Systems with Gibbs-Markov Structures
    José F. Alves
    Maria Carvalho
    Jorge Milhazes Freitas
    Communications in Mathematical Physics, 2010, 296 : 739 - 767
  • [4] Statistical Stability and Continuity of SRB Entropy for Systems with Gibbs-Markov Structures
    Alves, Jose F.
    Carvalho, Maria
    Freitas, Jorge Milhazes
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (03) : 739 - 767
  • [5] ENTROPY DEGENERATION OF CONVEX PROJECTIVE SURFACES
    Nie, Xin
    CONFORMAL GEOMETRY AND DYNAMICS, 2015, 19 : 318 - 322
  • [6] Continuity of SRB measure and entropy for Benedicks-Carleson quadratic maps
    Freitas, JM
    NONLINEARITY, 2005, 18 (02) : 831 - 854
  • [7] Deforming convex real projective structures
    Wienhard, Anna
    Zhang, Tengren
    GEOMETRIAE DEDICATA, 2018, 192 (01) : 327 - 360
  • [8] Deforming convex real projective structures
    Anna Wienhard
    Tengren Zhang
    Geometriae Dedicata, 2018, 192 : 327 - 360
  • [9] Entropy rigidity for foliations by strictly convex projective manifolds
    Savini, Alessio
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (01) : 575 - 589
  • [10] Compactification of strictly convex real projective structures
    Kim, I
    GEOMETRIAE DEDICATA, 2005, 113 (01) : 185 - 195