Effect of nanoinclusions on the lattice thermal conductivity of SnSe

被引:4
作者
Gupta, Raveena [1 ,2 ]
Bera, Chandan [1 ]
机构
[1] Inst Nano Sci & Technol, Sect 81, Mohali 140306, Punjab, India
[2] Panjab Univ, Ctr Nanosci & Nanotechnol, Sect 25, Chandigarh 160036, India
来源
NANO EXPRESS | 2020年 / 1卷 / 03期
关键词
nanoparticles; thermoelectric; lattice thermal conductivity; THERMOELECTRIC PERFORMANCE; FIGURE; MERIT; MODEL;
D O I
10.1088/2632-959X/abd291
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We theoretically investigate the effect of nanoparticle(NP) inclusion on the lattice thermal conductivity (kappa ( l )) of SnSe matrix. The theoretical approach involves the prediction of kappa ( l ) by varying the radius (R), density (D (1)), and volume fraction (epsilon) of NP in SnSe matrix. NP has strong anisotropic effect on the lattice thermal conductivity reduction along the crystallographic direction. We observe the existence of an optimal NP volume fraction that minimizes the nanocomposite's thermal conductivity. At room temperature, this value is found to be epsilon = 0.317 for which lattice thermal conductivity reduces by 35% with NP (R = 5 nm) compared to pure SnSe. An enhancement in the figure of merit (ZT) around room temperature opens up new opportunities for thermoelectric power generation at moderate temperatures. Even larger enhancement is possible in polycrystalline SnSe which will be helpful for thermoelectric devices.
引用
收藏
页数:6
相关论文
共 42 条
[1]  
[Anonymous], 1984, Electrodynamics of Continuous Media
[2]   The thermal conductivity of aqueous nanofluids containing ceria nanoparticles [J].
Beck, Michael P. ;
Yuan, Yanhui ;
Warrier, Pramod ;
Teja, Amyn S. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (06)
[3]  
Beltran-Bobadilla P., 2020, GEN CHEM, V7, P1
[4]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[5]   Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3 [J].
Bjerg, Lasse ;
Iversen, Bo B. ;
Madsen, Georg K. H. .
PHYSICAL REVIEW B, 2014, 89 (02)
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Graphene inclusion induced ultralow thermal conductivity and improved figure of merit inp-type SnSe [J].
Chen, Lei ;
Zhao, Weiyao ;
Li, Meng ;
Yang, Guangsai ;
Nazrul Islam, Sheik Md Kazi ;
Mitchell, David R. G. ;
Cheng, Zhenxiang ;
Wang, Xiaolin .
NANOSCALE, 2020, 12 (24) :12760-12766
[8]   Origin of p-type characteristics in a SnSe single crystal [J].
Duvjir, Ganbat ;
Min, Taewon ;
Trinh Thi Ly ;
Kim, Taehoon ;
Anh-Tuan Duong ;
Cho, Sunglae ;
Rhim, S. H. ;
Lee, Jaekwang ;
Kim, Jungdae .
APPLIED PHYSICS LETTERS, 2017, 110 (26)
[9]   Theoretical model for predicting thermoelectric properties of tin chalcogenides [J].
Gupta, Raveena ;
Kumar, Naveen ;
Kaur, Prabhjot ;
Bera, Chandan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (34) :18989-19008
[10]   A theoretical model of the thermoelectric properties of SnSxSe1-x and how to further enhance its thermoelectric performance [J].
Gupta, Raveena ;
Kaur, Baljinder ;
Carrete, Jesus ;
Bera, Chandan .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (22)