Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy

被引:62
作者
Anderson, Ryan B. [1 ]
Forni, Olivier [2 ]
Cousin, Agnes [2 ]
Wiens, Roger C. [3 ]
Clegg, Samuel M. [3 ]
Frydenvang, Jens [4 ]
Gabriel, Travis S. J. [1 ]
Ollila, Ann [3 ]
Schroder, Susanne [5 ]
Beyssac, Olivier [6 ]
Gibbons, Erin [7 ]
Vogt, David S. [5 ]
Clave, Elise [8 ]
Manrique, Jose-Antonio [9 ]
Legett, Carey [3 ]
Pilleri, Paolo [2 ]
Newell, Raymond T. [3 ]
Sarrao, Joseph [3 ]
Maurice, Sylvestre [2 ]
Arana, Gorka [10 ]
Benzerara, Karim [11 ]
Bernardi, Pernelle [12 ]
Bernard, Sylvain [11 ]
Bousquet, Bruno [8 ]
Brown, Adrian J. [13 ]
Alvarez-Llamas, Cesar [14 ]
Chide, Baptiste [2 ]
Cloutis, Edward [15 ]
Comellas, Jade [3 ]
Connell, Stephanie [15 ]
Dehouck, Erwin [16 ]
Delapp, Dorothea M. [3 ]
Essunfeld, Ari [3 ]
Fabre, Cecile [17 ]
Fouchet, Thierry [12 ]
Garcia-Florentino, Cristina [10 ]
Garcia-Gomez, Laura [14 ]
Gasda, Patrick [3 ]
Gasnault, Olivier [2 ]
Hausrath, Elisabeth M. [18 ]
Lanza, Nina L. [3 ]
Laserna, Javier [14 ]
Lasue, Jeremie [2 ]
Lopez, Guillermo [9 ]
Manuel Madariaga, Juan [10 ]
Mandon, Lucia [12 ]
Mangold, Nicolas [19 ]
Meslin, Pierre-Yves [2 ]
Nelson, Anthony E. [3 ]
Newsom, Horton [20 ]
机构
[1] US Geol Survey, Astrogeol Sci Ctr, Flagstaff, AZ 86001 USA
[2] Univ Toulouse, Inst Rech Astrophys & Planetol IRAP, CNRS, UPS, Toulouse, France
[3] Los Alamos Natl Lab LANL, Los Alamos, NM USA
[4] Univ Copenhagen, Globe Inst, Copenhagen, Denmark
[5] DLR, Inst Opt Sensor Syst, Berlin, Germany
[6] Univ Pierre & Marie Curie UPMC, Inst Mineral Phys Mat & Cosmochim IMPMC, Paris, France
[7] McGill Univ, Montreal, PQ, Canada
[8] Univ Bordeaux, Ctr Lasers Intenses & Applicat, CEA, CNRS, Bordeaux, France
[9] Univ Valladolid, Valladolid, Spain
[10] Univ Basque Country, UPV EHU, Leioa, Spain
[11] Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, CNRS, Museum Natl Hist Nat, Paris, France
[12] Univ Paris Diderot, Sorbonne Univ, Observ Paris, Lab Etud Spatiales & Instrumentat Astrophys,CNRS, Meudon, France
[13] Planicus Res, Severna Pk, MD USA
[14] Univ Malaga, Dept Analyt Chem, UMALASERLAB, Malaga, Spain
[15] Univ Winnipeg, Winnipeg, MB, Canada
[16] Univ Lyon, UCBL, ENSL, UJM,CNRS,LGL TPE, F-69622 Villeurbanne, France
[17] Univ Lorraine, CNRS, GeoRessources, Nancy, France
[18] Univ Nevada, Las Vegas, NV 89154 USA
[19] Univ Nantes, Univ Angers, Lab Planetol & Geodynam, CNRS,UMR 6112, Nantes, France
[20] Univ New Mexico, Albuquerque, NM 87131 USA
[21] Univ Hawaii, Manoa, HI USA
[22] NASA, Johnson Space Ctr, Astromat Res & Explorat Sci ARES Div, Houston, TX USA
[23] SETI Inst, Mountain View, CA USA
[24] SUNY Stony Brook, Stony Brook, NY 11794 USA
[25] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Laser induced breakdown spectroscopy; LIBS; Mars; Multivariate regression; Regression; Chemometrics; Calibration; CHEMCAM INSTRUMENT SUITE; GALE CRATER; EMISSION-LINES; MARS; REGRESSION; KIMBERLEY; MINERALOGY; SELECTION; ACCURACY; MISSION;
D O I
10.1016/j.sab.2021.106347
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions and spectra are normalized to minimize signal fluctuations and effects of target distance. In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositions of diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g., silicates, sulfates, carbonates, oxides), more unusual compositions (e.g., Mn ore and sodalite), and replicates of the sintered SuperCam calibration targets (SCCTs) onboard the rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five "folds " with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining four folds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3 m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
引用
收藏
页数:33
相关论文
共 93 条
[1]   Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data [J].
Anderson, D. E. ;
Ehlmann, B. L. ;
Forni, O. ;
Clegg, S. M. ;
Cousin, A. ;
Thomas, N. H. ;
Lasue, J. ;
Delapp, D. M. ;
McInroy, R. E. ;
Gasnault, O. ;
Dyar, M. D. ;
Schroeder, S. ;
Maurice, S. ;
Wiens, R. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2017, 122 (04) :744-770
[2]   Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models [J].
Anderson, Ryan B. ;
Clegg, Samuel M. ;
Frydenvang, Jens ;
Wiens, Roger C. ;
McLennan, Scott ;
Morris, Richard V. ;
Ehlmann, Bethany ;
Dyar, M. Darby .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2017, 129 :49-57
[3]   The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy [J].
Anderson, Ryan B. ;
Morris, Richard V. ;
Clegg, Samuel M. ;
Bell, James F., III ;
Wiens, Roger C. ;
Humphries, Seth D. ;
Mertzman, Stanley A. ;
Graff, Trevor G. ;
McInroy, Rhonda .
ICARUS, 2011, 215 (02) :608-627
[4]  
[Anonymous], 2008, TECHNION
[5]  
[Anonymous], 2009, The elements of statistical learning
[6]  
Baker Piotrkowski, 1998, [No title captured]
[7]   Geochemical variation in the Stimson formation of Gale crater: Provenance, mineral sorting, and a comparison with modern Martian dunes [J].
Bedford, C. C. ;
Schwenzer, S. P. ;
Bridges, J. C. ;
Banham, S. ;
Wiens, R. C. ;
Gasnault, O. ;
Rampe, B. ;
Frydenvang, J. ;
Gasda, P. J. .
ICARUS, 2020, 341
[8]   Alteration trends and geochemical source region characteristics preserved in the fluviolacustrine sedimentary record of Gale crater, Mars [J].
Bedford, C. C. ;
Bridges, J. C. ;
Schwenzer, S. P. ;
Wiens, R. C. ;
Rampe, E. B. ;
Frydenvang, J. ;
Gasda, P. J. .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2019, 246 :234-266
[9]  
Bijaoui A., 1990, ExA, V1, P347, DOI DOI 10.1007/BF00426718
[10]   Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration [J].
Blaney, D. L. ;
Wiens, R. C. ;
Maurice, S. ;
Clegg, S. M. ;
Anderson, R. B. ;
Kah, L. C. ;
Le Mouelic, S. ;
Ollila, A. ;
Bridges, N. ;
Tokar, R. ;
Berger, G. ;
Bridges, J. C. ;
Cousin, A. ;
Clark, B. ;
Dyar, M. D. ;
King, P. L. ;
Lanza, N. ;
Mangold, N. ;
Meslin, P. -Y. ;
Newsom, H. ;
Schroeder, S. ;
Rowland, S. ;
Johnson, J. ;
Edgar, L. ;
Gasnault, O. ;
Forni, O. ;
Schmidt, M. ;
Goetz, W. ;
Stack, K. ;
Sumner, D. ;
Fisk, M. ;
Madsen, M. B. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (09) :2109-2131