Asymptotic shrinkage estimation: The regression case
被引:0
|
作者:
Ahmed, SE
论文数: 0引用数: 0
h-index: 0
机构:
Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, CanadaUniv Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
Ahmed, SE
[1
]
机构:
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
来源:
APPLIED STATISTICAL SCIENCE, II: PAPERS IN HONOR OF MUNIR AHMAD
|
1997年
关键词:
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, we first outline some recent developments in the area of pretest and shrinkage estimation. We discuss various large sample estimation techniques in a regression model when the error terms are not necessarily normally distributed. The commonly asked question whether to combine sample data and nonsample information (NSI) or uncertain prior information (UPI) will be systematically addressed. We propose estimators on the basis of preliminary tests or significance and James-Stein rule. The properties oi these estimators are studied in the problem of estimating regression coefficients in the multiple regression model when it is apriori suspected that the coefficients may be restricted to a subspace.
机构:
CUNY, Baruch Coll, Dept Stat & Comp Informat Syst, New York, NY 10010 USACUNY, Baruch Coll, Dept Stat & Comp Informat Syst, New York, NY 10010 USA
Wu, Rongning
Wang, Qin
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USACUNY, Baruch Coll, Dept Stat & Comp Informat Syst, New York, NY 10010 USA
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore