Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models

被引:201
作者
Jiao, Shan [1 ]
Chong, Guoshuang [2 ]
Huang, Changcheng [1 ]
Hu, Hanqing [3 ]
Wang, Mingjing [4 ]
Heidari, Ali Asghar [5 ,6 ]
Chen, Huiling [1 ]
Zhao, Xuehua [7 ]
机构
[1] Wenzhou Univ, Dept Comp Sci & Artificial Intelligence, Wenzhou 325035, Peoples R China
[2] China Ind Control Syst Cyber Emergency Response T, Beijing 100040, Peoples R China
[3] Beijing Informat Sci & Technol Univ, Lab Big Data Decis Making Green Dev, Beijing 100192, Peoples R China
[4] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[5] Univ Tehran, Sch Surveying & Geospatial Engn, Coll Engn, Tehran, Iran
[6] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore, Singapore
[7] Shenzhen Inst Informat Technol, Sch Digital Media, Shenzhen 518172, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Parameters estimation; Photovoltaic models; Harris hawks optimization; Orthogonal learning; General opposition-based learning; PARTICLE SWARM OPTIMIZATION; SOLAR-CELL MODELS; ANT COLONY OPTIMIZATION; MUTATION STRATEGY; GENETIC ALGORITHM; DIODE MODELS; PV CELLS; IDENTIFICATION; EXTRACTION; SEARCH;
D O I
10.1016/j.energy.2020.117804
中图分类号
O414.1 [热力学];
学科分类号
摘要
Extracting parameters and constructing high-precision models of photovoltaic modules through actual current-voltage data is required for simulation, control, and optimization of a photovoltaic system. Because of the application of such problems, the identification of unknown parameters accurately and reliably remains a challenging task. In this paper, we propose an enhanced Harris Hawks Optimization (EHHO), which combines orthogonal learning (OL) and general opposition-based learning (GOBL), to estimate the parameters of solar cells and photovoltaic modules effectively and accurately. In EHHO, OL helps to improve the speed of the HHO method and the accuracy of the solution. At the same time, the GOBL mechanism can increase both diversity of the population and the HHO's exploitation performance. In addition, these two mechanisms defend the equilibrium between the exploitation and exploration rates. The results show that accuracy, reliability, and other aspects of this method are better than most existing methods. Thus, we observed that EHHO can be used as an effective method for parameter estimation of solar cells and photovoltaic modules. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:20
相关论文
共 91 条
[1]   Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach [J].
Abbassi, Abdelkader ;
Abbassi, Rabeh ;
Heidari, Ali Asghar ;
Oliva, Diego ;
Chen, Huiling ;
Habib, Arslan ;
Jemli, Mohamed ;
Wang, Mingjing .
ENERGY, 2020, 198
[2]   An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models [J].
Abbassi, Rabeh ;
Abbassi, Abdelkader ;
Heidari, Ali Asghar ;
Mirjalili, Seyedali .
ENERGY CONVERSION AND MANAGEMENT, 2019, 179 :362-372
[3]   A hyper-heuristic for improving the initial population of whale optimization algorithm [J].
Abd Elaziz, Mohamed ;
Mirjalili, Seyedali .
KNOWLEDGE-BASED SYSTEMS, 2019, 172 :42-63
[4]   Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm [J].
Abd Elaziz, Mohamed ;
Oliva, Diego .
ENERGY CONVERSION AND MANAGEMENT, 2018, 171 :1843-1859
[5]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[6]  
An T, 2014, WORLD T ENG TECHNOLO, V12, P284
[7]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[8]   Parameter identification for solar cell models using harmony search-based algorithms [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
SOLAR ENERGY, 2012, 86 (11) :3241-3249
[9]   Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data [J].
Awadallah, Mohamed A. .
ENERGY CONVERSION AND MANAGEMENT, 2016, 113 :312-320
[10]   Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints [J].
Bana, Sangram ;
Saini, R. P. .
RENEWABLE ENERGY, 2017, 101 :1299-1310