Inequalities detecting structural properties of a finite group

被引:19
作者
Garonzi, Martino [1 ]
Patassini, Massimiliano [1 ]
机构
[1] Dipartimento Matemat Pura & Applicata, Padua, Italy
关键词
Cyclic groups; Inequalities; Nilpotent groups; Order of an element; ORDERS;
D O I
10.1080/00927872.2016.1172621
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove several results detecting cyclicity or nilpotency of a finite group G in terms of inequalities involving the orders of the elements of G and the orders of the elements of the cyclic group of order |G|. We prove that, among the groups of the same order, the number of cyclic subgroups is minimal for the cyclic group, and the product of the orders of the elements is maximal for the cyclic group.
引用
收藏
页码:677 / 687
页数:11
相关论文
共 8 条
[1]   SUMS OF ELEMENT ORDERS IN FINITE GROUPS [J].
Amiri, Habib ;
Amiri, S. M. Jafarian ;
Isaacs, I. M. .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (09) :2978-2980
[2]  
De Medts T., 2012, ORDER INCREASING BIJ
[3]   Finite groups determined by an inequality of the orders of their subgroups [J].
De Medts, Tom ;
Tarnauceanu, Marius .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (04) :699-704
[4]  
Frobenius F. G., 1907, FUNDAMENTALSATZ GRUP, VII, P428
[5]   ON A THEOREM OF FROBENIUS - SOLUTIONS OF XN = 1 IN FINITE-GROUPS [J].
ISAACS, IM ;
ROBINSON, GR .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :352-354
[6]   Minimizing the sum of negative powers of orders of group elements [J].
Salmasian, H .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03) :299-299
[7]  
Tarnauceanu M., 2012, INEQUALITY DETECTING
[8]  
Tarnauceanu M., 2011, QUESTION PRODUCT ELE