Manganese sulfate-derived α/γ-MnS embedded in N-doped layered carbon for high-performance lithium-ion batteries

被引:16
作者
Jin, X. [1 ]
Sheng, L. [1 ]
Jiang, L. [2 ]
Xiao, Z. [1 ]
Wang, D. [1 ]
Jiang, M. [1 ]
Lin, X. [1 ]
Zhang, X. [1 ]
Duan, X. [1 ]
Shi, J. [1 ]
机构
[1] Beihua Univ, Wood Mat Sci & Engn Key Lab Jilin Prov, Jilin 132013, Jilin, Peoples R China
[2] Jilin Inst Chem Technol, Key Lab Special Funct Mat Jilin Prov Univ, Jilin 132022, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Anode; Energy density; Nitrogen doping; Biomass-derived carbon; HIGH-CAPACITY ANODE; HIGH-ENERGY; ELECTROCHEMICAL PROPERTIES; RATIONAL COMBINATION; NANOSHEETS; FABRICATION; NANOCOMPOSITE; NANOPARTICLES; COMPOSITES; MODULATION;
D O I
10.1016/j.mtchem.2022.100992
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manganese sulfide (MnS), as one of transition metal sulfides, can be used as an alternative anode electrode material in lithium-ion batteries on account of its high theoretical specific capacity (616 mAh g(-1)) and low redox potential (0.74 V). It is a challenge to use MnS as commercial electrode material owing to its huge volume variation and low electronic conductivity. Hence, we propose a novel strategy to optimize the application of MnS via one-step annealing process, which embeds MnS nanosheets into N-doped biomass carbon layers (alpha/gamma-MnS@NC). This strategy utilizes the strong adsorption ability of Auricularia to capture the chemical reagent ingredients and uses Auricularia as carbon source to get biomass carbon layers. Various characterizations demonstrate that MnS combined with carbon skeleton through C-S-Mn bonds. The alpha/gamma-MnS@NC displays excellent electrochemical performance: high reversible capacity of 1042 mAh g(-1), excellent rate capability (685 mAh g(-1) at 2.0 A g(-1)), and stable cycle performance after 1000 cycles. The assembled alpha/gamma-MnS@NC//LiFePO4 and alpha/gamma-MnS@NC//LiCoO2 full cells deliver high energy density of 300.2 Wh kg(-1) and 400.2 Wh kg(-1), respectively. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 60 条
[1]   Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries [J].
Camacho, Ramon A. Paredes ;
Wu, Ai-Min ;
Jin, Xiao-Zhe ;
Dong, Xu-Feng ;
Li, Xiao-Na ;
Huang, Hao .
JOURNAL OF POWER SOURCES, 2019, 437
[2]   An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials [J].
Chen, Dongjiang ;
Zhou, Ziqi ;
Feng, Chao ;
Lv, Weiqiang ;
Wei, Zhaohuan ;
Zhang, Kelvin H. L. ;
Lin, Bin ;
Wu, Songhao ;
Lei, Tianyu ;
Guo, Xuyun ;
Zhu, Gaolong ;
Jian, Xian ;
Xiong, Jie ;
Traversa, Enrico ;
Dou, Shi Xue ;
He, Weidong .
ADVANCED ENERGY MATERIALS, 2019, 9 (15)
[3]   Controllable fabrication of nitrogen -doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy [J].
Chen, Huaxia ;
Lu, Xingyu ;
Wang, Haihua ;
Sui, Dianpeng ;
Meng, Fanbao ;
Qi, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2020, 49 :348-357
[4]   MnS nanoparticles embedded in N,S co-doped carbon nanosheets for superior lithium ion storage [J].
Chen, Jiangnan ;
Cong, Jianwei ;
Chen, Yao ;
Wang, Qiang ;
Shi, Mingchen ;
Liu, Xiaomin ;
Yang, Hui .
APPLIED SURFACE SCIENCE, 2020, 508
[5]   Transition metal oxides anchored on graphene/carbon nanotubes conductive network as both the negative and positive electrodes for asymmetric supercapacitor [J].
Ding, Bing ;
Wu, Xiaoliang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
[6]   Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability [J].
Ding, Caihua ;
Su, Dezhi ;
Ma, Wenxian ;
Zhao, Yongjie ;
Yan, Dong ;
Li, Jingbo ;
Jin, Haibo .
APPLIED SURFACE SCIENCE, 2017, 403 :1-8
[7]   Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S Co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage [J].
Gao, Xu ;
Wang, Boya ;
Zhang, Yun ;
Liu, Heng ;
Liu, Huakun ;
Wu, Hao ;
Dou, Shixue .
ENERGY STORAGE MATERIALS, 2019, 16 :46-55
[8]   Double-Layer N,S-Codoped Carbon Protection of MnS Nanoparticles Enabling Ultralong-Life and High-Rate Lithium Ion Storage [J].
Geng, Hongbo ;
Su, Hao ;
Lin, Chaohui ;
Ma, Yufei ;
Zhang, Yufei ;
Chen, Dong ;
Tan, Huiteng ;
Rui, Xianhong ;
Fang, Yanxiong ;
Li, Cheng Chao .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (09) :4867-4873
[9]   Facile simultaneous polymerization enabled in-situ confinement of size-tailored GeO2 nanocrystals in continuous S-Doped carbons for lithium storage [J].
Han, Xiaoyan ;
Gao, Pengyuan ;
Deng, Shuyi ;
Mei, Peng ;
Zhang, Qing ;
Yang, Yingkui .
MATERIALS TODAY CHEMISTRY, 2020, 17
[10]   Keplerate-type polyoxometalate {Mo72Fe30} nanoparticle anodes for high-energy lithium-ion batteries [J].
Huang, Shao-Chu ;
Lin, Chia-Ching ;
Hsu, Chi-Ting ;
Guo, Chun-Han ;
Chen, Tsan-Yao ;
Liao, Yen-Fa ;
Chen, Han-Yi .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (41) :21623-21633