Criterion of positivity for semilinear problems with applications in biology

被引:3
作者
Duprez, Michel [1 ]
Perasso, Antoine [2 ]
机构
[1] Univ Aix Marseille, Inst Math Marseille, UMR 7373, CNRS, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Univ Bourgogne Franche Comte, CNRS, Chronoenvironm UMR 6249, 16 Route Gray, F-25000 Besancon, France
关键词
Positivity; Well-posedness; Dynamic systems; Semilinear problems; Population dynamics;
D O I
10.1007/s11117-017-0474-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this article is to provide an useful criterion of positivity and well-posedness for a wide range of infinite dimensional semilinear abstract Cauchy problems. This criterion is based on some weak assumptions on the non-linear part of the semilinear problem and on the existence of a strongly continuous semigroup generated by the differential operator. To illustrate a large variety of applications, we exhibit the feasibility of this criterion through three examples in mathematical biology: epidemiology, predator-prey interactions and oncology.
引用
收藏
页码:1383 / 1392
页数:10
相关论文
共 13 条
[1]  
Alaa N., 2008, INT J MATH STATISCTI, V2, P30
[2]  
[Anonymous], 1986, LECT NOTES MATH
[3]  
[Anonymous], 1991, Banach lattices
[4]  
[Anonymous], 2002, INTERDISCIPLINARY AP
[5]   Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method [J].
Chakrabarty, Siddhartha P. ;
Hanson, Floyd B. .
MATHEMATICAL BIOSCIENCES, 2009, 219 (02) :129-141
[6]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[7]  
MAGAL P, 2008, LECT NOTES MATH MATH, V1936
[8]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, V44, DOI DOI 10.1007/978-1-4612-5561-1
[9]  
Perasso A., DIFFERENTIA IN PRESS
[10]   ASYMPTOTIC BEHAVIOR AND NUMERICAL SIMULATIONS FOR AN INFECTION LOAD-STRUCTURED EPIDEMIOLOGICAL MODEL: APPLICATION TO THE TRANSMISSION OF PRION PATHOLOGIES [J].
Perasso, Antoine ;
Razafison, Ulrich .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (05) :1571-1597