Phase Transformations in Mn-Al and Mn-Bi Magnets by Repeated Heat Treatment

被引:5
作者
Saetang, P. [1 ,2 ]
Charoensuk, T. [2 ,3 ]
Boonyang, U. [3 ,4 ]
Jantaratana, P. [5 ]
Sirisathitkul, C. [1 ,2 ,3 ]
机构
[1] Walailak Univ, Sch Sci, Div Phys, 222 Thaiburi, Thasala 80160, Nakhon Si Thamm, Thailand
[2] Minist Higher Educ Sci Res & Innovat, Thailand Ctr Excellence Phys, 328 Si Ayutthaya Rd, Bangkok 10400, Thailand
[3] Walailak Univ, Funct Mat & Nanotechnol Ctr Excellence, 222 Thaiburi, Thasala 80160, Nakhon Si Thamm, Thailand
[4] Walailak Univ, Sch Sci, Div Chem, 222 Thaiburi, Thasala 80160, Nakhon Si Thamm, Thailand
[5] Kasetsart Univ, Fac Sci, Dept Phys, 50 Ngam Wong Wan Rd, Bangkok 10900, Thailand
关键词
Ferromagnetic alloys; Manganese-bismuth; Manganese-aluminum; Elemental composition morphology; TAU-PHASE; PERMANENT; MICROSTRUCTURE; COERCIVITY; ALLOYS;
D O I
10.1007/s12666-020-01912-0
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A stepped heating cycle in a tube furnace at 1000 degrees C for 1 h followed by holding at 400 degrees C for 1 h directly increases the amount of ferromagnetic tau-phase of manganese-aluminum (Mn-Al). Repeating this heating regime for 2 more times, further increase in the amount and uniform distribution of the tau-phase is obtained at the expense of the epsilon-phase. The magnetization and coercivity are increased after each heating cycle, and the effect is more pronounced when 2% carbon (C) is added to Mn-Al. When the similar heat treatment cycle is applied to manganese-bismuth (Mn-Bi), the ferromagnetic alpha-phase is detected with larger magnetizations, but substantial Mn and Bi are segregated from the alloy. This solid-state diffusion in tube furnace offers a facile route to improve rare-earth-free magnets.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 30 条
[1]   Preparation of Industrial Manganese Compound from a Low-Grade Spessartine Ore by Hydrometallurgical Process [J].
Baba, Alafara A. ;
Abdulkareem, Aishat Y. ;
Raji, Mustapha A. ;
Ayinla, Kuranga I. ;
Adekola, Folahan A. ;
Bale, Rafiu B. ;
Ghosh, Malay K. .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2018, 71 (10) :2453-2463
[2]   Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys [J].
Crisan, A. D. ;
Vasiliu, F. ;
Nicula, R. ;
Bartha, C. ;
Mercioniu, I. ;
Crisan, O. .
MATERIALS CHARACTERIZATION, 2018, 140 :1-8
[3]   Current progress and future challenges in rare-earth-free permanent magnets [J].
Cui, Jun ;
Kramer, Matthew ;
Zhou, Lin ;
Liu, Fei ;
Gabay, Alexander ;
Hadjipanayis, George ;
Balasubramanian, Balamurugan ;
Sellmyer, David .
ACTA MATERIALIA, 2018, 158 :118-137
[4]   Effect of simulated double cycle welding on HAZ microstructure for HSLA steels [J].
El-Kashif, Emad F. ;
Morsy, Morsy A. .
ADVANCES IN MATERIALS RESEARCH-AN INTERNATIONAL JOURNAL, 2018, 7 (03) :195-201
[5]   Application of Mechanochemical Synthesis to Manufacturing of Permanent Magnets [J].
Gabay, A. M. ;
Hadjipanayis, G. C. .
JOM, 2015, 67 (06) :1329-1335
[6]   Ubiquitin-Proteasome-Dependent Regulation of Bidirectional Communication between Plastids and the Nucleus [J].
Hirosawa, Yoshihiro ;
Ito-Inaba, Yasuko ;
Inaba, Takehito .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[7]   Formation of magnetic phases in rapidly quenched Mn-Based systems [J].
Janotova, I. ;
Svec, P., Sr. ;
Svec, P. ;
Matko, I. ;
Janickovic, D. ;
Kunca, B. ;
Marcin, J. ;
Skorvanek, I. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 749 :128-133
[8]   Relation between solidification microstructure and coercivity in MnAl permanent-magnet alloys [J].
Jia, Yuxiao ;
Wu, Yuye ;
Zhao, Shuang ;
Wang, Jingmin ;
Jiang, Chengbao .
INTERMETALLICS, 2018, 96 :41-48
[9]   Measured and calculated properties of B-doped τ-phase MnAl - A rare earth free permanent magnet [J].
Kontos, Sofia ;
Fang, Hailiang ;
Li, Jiheng ;
Delczeg-Czirjak, Erna Krisztina ;
Shafeie, Samrand ;
Svedlindh, Peter ;
Sahlberg, Martin ;
Gunnarsson, Klas .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 474 :591-598
[10]  
Lewis LH, 2002, MATER RES SOC SYMP P, V703, P565