A note on compact operators on matrix domains

被引:47
作者
Djolovic, Ivana [1 ]
Malkowsky, Eberhard [2 ,3 ]
机构
[1] Univ Belgrade, Tech Fac, Bor 19210, Serbia
[2] Univ Giessen, Dept Math, D-35392 Giessen, Germany
[3] German Jordanian Univ, Sch Comp & Informat, Amman 11180, Jordan
关键词
sequence spaces; BK and AK spaces; matrix domains; matrix transformations; compact operators; measure of noncompactness;
D O I
10.1016/j.jmaa.2007.08.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some identities or estimates for the operator norms and Hausdorff measures of noncompactness of linear operators given by infinite matrices that map the matrix domains of triangles in arbitrary BK spaces with AK, or in the spaces of all convergent or bounded sequences, into the spaces of all null, convergent or bounded sequences, or of all absolutely convergent series. Furthermore, we apply these results to the characterizations of compact operators on the matrix domains of triangles in the classical sequence spaces, and on the sequence spaces studied in [I. Djolovic, Compact operators on the spaces a(0)(r)(Delta) and a(c)(r)(Delta), J. Math. Anal. Appl. 318 (2) (2006) 658 - 666; 1. Djolovic, On the space of bounded Euler difference sequences and some classes of compact operators, Appl. Math. Comput. 182 (2) (2006) 1803 - 1811]. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 19 条
[1]   On the Euler sequence spaces which include the spaces lp and l∞I [J].
Altay, B ;
Basar, F ;
Mursaleen, M .
INFORMATION SCIENCES, 2006, 176 (10) :1450-1462
[2]  
Altay B., 2005, UKR MATH J, V57, P1, DOI DOI 10.1007/S11253-005-0168-9
[3]  
Basar F., 2002, Southeast Asian Bull. Math., V26, P701
[4]  
BASAR F, 2005, J MATH, V31, P107
[5]  
Cooke RG, 1950, INFINITE MATRICES SE
[6]   Compact operators on the spaces a0r(Δ) and acr(Δ) [J].
Djolovic, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :658-666
[7]   On the space of bounded Euler difference sequences and some classes of compact operators [J].
Djolovic, Ivana .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) :1803-1811
[8]  
JARRAH AM, 2003, EILOMAT, V17, P59
[9]   ON CERTAIN SEQUENCE-SPACES [J].
KIZMAZ, H .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (02) :169-176
[10]  
Malkowsky E., 2000, Zbornik radova, Matematicki Inst. SANU, Belgrade, V9, P143