The Laplacian spectral radius of some bipartite graphs

被引:20
作者
Zhang, Xiaoling [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian spectral radius; bicyclic graph; bipartite graph;
D O I
10.1016/j.laa.2007.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the largest Laplacian spectral radius of the bipartite graphs with n vertices and k cut edges and the bicyclic bipartite graphs, respectively. Identifying the center of a star K-1,K-k and one vertex of degree n of K-m,K-n, we denote by K-m,n(k) the resulting graph. We show that the graph K-2,n-k-2(k) (1 <= k <= n - 4) is the unique graph with the largest Laplacian spectral radius among the bipartite graphs with n vertices and k cut edges, and K-2,3(n-5) (n >= 7) is the unique graph with the largest Laplacian spectral radius among all the bicyclic bipartite graphs. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1610 / 1619
页数:10
相关论文
共 9 条
[1]  
DENG HY, 2002, J NAT SCI HUNAN NORM, V25, P1
[2]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[3]   A new upper bound for the Laplacian spectral radius of graphs [J].
Guo, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 :61-66
[4]   The effect on the Laplacian spectral radius of a graph by adding or grafting edges [J].
Guo, JM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (01) :59-71
[5]   The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices [J].
Guo, SG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 :78-85
[6]  
Horn R. A., 1986, Matrix analysis
[7]   On the spectral radius of graphs with cut edges [J].
Liu, HQ ;
Lu, M ;
Tian, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 :139-145
[8]  
PETROVIC M, 2005, B ACAD SERBE SCI ART, V30, P93
[9]  
郭曙光, 2001, [高校应用数学学报. A辑, Applied Mathematics: A Journal of Chinese Universities], V16, P131