Variational derivation of the Camassa-Holm shallow water equation

被引:96
作者
Ionescu-Kruse, Delia [1 ]
机构
[1] Acad Romana, Inst Math, RO-014700 Bucharest, Romania
关键词
D O I
10.2991/jnmp.2007.14.3.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the physical hypothesis in which an approximate model of water waves is obtained. For an irrotational unidirectional shallow water flow, we derive the Camassa-Holm equation by a variational approach in the Lagrangian formalism.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 20 条
[2]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[3]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[4]   Exact steady periodic water waves with vorticity [J].
Constantin, A ;
Strauss, W .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (04) :481-527
[5]   Geodesic flow on the diffeomorphism group of the circle [J].
Constantin, A ;
Kolev, B .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (04) :787-804
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[8]  
2-D
[9]   A Lagrangian approximation to the water-wave problem [J].
Constantin, A .
APPLIED MATHEMATICS LETTERS, 2001, 14 (07) :789-795
[10]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+