[18F] FDG PET/CT features for the molecular characterization of primary breast tumors

被引:62
作者
Antunovic, Lidija [1 ]
Gallivanone, Francesca [2 ]
Sollini, Martina [3 ]
Sagona, Andrea [4 ]
Invento, Alessandra [5 ]
Manfrinato, Giulia [6 ]
Kirienko, Margarita [3 ]
Tinterri, Corrado [4 ]
Chiti, Arturo [1 ,3 ]
Castiglioni, Isabella [2 ]
机构
[1] Humanitas Res Hosp, Nucl Med Dept, Via A Manzoni 56, I-20089 Milan, Italy
[2] CNR, Inst Mol Bioimaging & Physiol, Lab Innovat & Integrat Mol Med, Via F Celli 93, I-20090 Milan, Italy
[3] Humanitas Univ, Dept Biomed Sci, Via A Manzoni 113, I-20089 Milan, Italy
[4] Humanitas Res Hosp, Breast Unit, Via A Manzoni 56, I-20089 Milan, Italy
[5] Integrated Univ Hosp, Breast Unit, Piazzale A Stefani 1, I-37126 Verona, Italy
[6] Univ Milan, Residency Program Nucl Med, Via A Rudini 8, I-20100 Milan, Italy
关键词
Breast cancer; F-18] FDG-pet/Ct; Radiomics; PROGNOSTIC-FACTORS; NEOADJUVANT CHEMOTHERAPY; DUCTAL CARCINOMA; CANCER SUBTYPES; HETEROGENEITY; PREDICTION; RADIOMICS; VOLUME; GLYCOLYSIS; GUIDELINES;
D O I
10.1007/s00259-017-3770-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose The aim of this study was to evaluate the role of imaging features derived from [F-18] FDG-PET/CT to provide in vivo characterization of breast cancer (BC). Methods Images from 43 patients with a first diagnosis of BC were reviewed. Images were acquired before any treatment. Histological data were derived from pretreatment biopsy or surgical histological specimen; these included tumor type, grade, ER and PgR receptor status, lymphovascular invasion, Ki67 index, HER2 status, and molecular subtype. Standard parameters (SUVmean, TLG, MTV) and advanced imaging features (histogram-based and shape and size features) were evaluated. Univariate analysis, hierarchical clustering analysis, and exact Fisher's test were used for statistical analysis of data. Imaging-derived metrics were reduced evaluating the mutual correlation between groups of features to form a signature. Results A significant correlation was found between some advanced imaging features and the histological type. Different molecular subtypes were characterized by different values of two histogram-based features (median and energy). A significant association was observed between the imaging signature and luminal A and luminal B HER2 negative molecular subtype and also when considering luminal A, luminal B HER2-negative and HER2-positive groups. Similar results were found between the signature and all five molecular subtypes and also when considering the histological types of BC. Conclusions Our results suggest a complementary role of standard PET imaging parameters and advanced imaging features for the in vivo biological characterization of BC lesions.
引用
收藏
页码:1945 / 1954
页数:10
相关论文
共 42 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Computerized Image Analysis for Identifying Triple-Negative Breast Cancers and Differentiating Them from Other Molecular Subtypes of Breast Cancer on Dynamic Contrast-enhanced MR Images: A Feasibility Study [J].
Agner, Shannon C. ;
Rosen, Mark A. ;
Englander, Sarah ;
Tomaszewski, John E. ;
Feldman, Michael D. ;
Zhang, Paul ;
Mies, Carolyn ;
Schnall, Mitchell D. ;
Madabhushi, Anant .
RADIOLOGY, 2014, 272 (01) :91-99
[3]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[4]   Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer [J].
Carvalho, Sara ;
Leijenaar, Ralph T. H. ;
Velazquez, Emmanuel Rios ;
Oberije, Cary ;
Parmar, Chintan ;
Van Elmpt, Wouter ;
Reymen, Bart ;
Troost, Esther G. C. ;
Oellers, Michel ;
Dekker, Andre ;
Gillies, Robert ;
Aerts, Hugo J. W. L. ;
Lambin, Philippe .
ACTA ONCOLOGICA, 2013, 52 (07) :1398-1404
[5]   Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer [J].
Cheang, Maggie C. U. ;
Chia, Stephen K. ;
Voduc, David ;
Gao, Dongxia ;
Leung, Samuel ;
Snider, Jacqueline ;
Watson, Mark ;
Davies, Sherri ;
Bernard, Philip S. ;
Parker, Joel S. ;
Perou, Charles M. ;
Ellis, Matthew J. ;
Nielsen, Torsten O. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (10) :736-750
[6]   Molecular subtype approximated by quantitative estrogen receptor, progesterone receptor and Her2 can predict the prognosis of breast cancer [J].
Chen, Xiao-song ;
Ma, Chuan-dong ;
Wu, Jia-yi ;
Yang, Wen-tao ;
Lu, Hong-fen ;
Wu, Jiong ;
Lu, Jin-song ;
Shao, Zhi-min ;
Shen, Zhen-zhou ;
Shen, Kun-wei .
TUMORI JOURNAL, 2010, 96 (01) :103-110
[7]   Risk of Breast Cancer in Women With a CHEK2 Mutation With and Without a Family History of Breast Cancer [J].
Cybulski, Cezary ;
Wokolorczyk, Dominika ;
Jakubowska, Anna ;
Huzarski, Tomasz ;
Byrski, Tomasz ;
Gronwald, Jacek ;
Masojc, Bartlomiej ;
Debniak, Tadeusz ;
Gorski, Bohdan ;
Blecharz, Pawel ;
Narod, Steven A. ;
Lubinski, Jan .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (28) :3747-3752
[8]   Highlights from the 14th St Gallen International Breast Cancer Conference 2015 in Vienna: Dealing with classification, prognostication, and prediction refinement to personalize the treatment of patients with early breast cancer [J].
Esposito, Angela ;
Criscitiello, Carmen ;
Curigliano, Giuseppe .
ECANCERMEDICALSCIENCE, 2015, 9
[9]   A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions [J].
Gallivanone, F. ;
Interlenghi, M. ;
Canervari, C. ;
Castiglioni, I. .
JOURNAL OF INSTRUMENTATION, 2016, 11
[10]  
Gallivanone F, 2014, Q J NUCL MED MOL IM, V58, P424