Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions

被引:32
|
作者
Lees, A. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
Knauer, J. P. [1 ]
Gopalaswamy, V. [1 ,2 ]
Patel, D. [1 ,2 ]
Woo, K. M. [1 ]
Anderson, K. S. [1 ]
Campbell, E. M. [1 ]
Cao, D. [1 ]
Carroll-Nellenback, J. [1 ]
Epstein, R. [1 ]
Forrest, C. [1 ]
Goncharov, V. N. [1 ]
Harding, D. R. [1 ]
Hu, S. X. [1 ]
Igumenshchev, I. V. [1 ]
Janezic, R. T. [1 ]
Mannion, O. M. [1 ,3 ]
Radha, P. B. [1 ]
Regan, S. P. [1 ]
Shvydky, A. [1 ]
Shah, R. C. [1 ]
Shmayda, W. T. [1 ]
Stoeckl, C. [1 ]
Theobald, W. [1 ]
Thomas, C. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 E River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; DIRECT-DRIVE; IGNITION;
D O I
10.1103/PhysRevLett.127.105001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the l = 1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and l = 1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2 x 10(14) fusion reactions.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Fluid and kinetic simulation of inertial confinement fusion plasmas
    Atzeni, S
    Schiavi, A
    Califano, F
    Cattani, F
    Cornolti, F
    Del Sarto, D
    Liseykina, TV
    Macchi, A
    Pegoraro, F
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 169 (1-3) : 153 - 159
  • [42] Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas
    Frenje, J. A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (02)
  • [43] Avoided crossings of modes of a finite target with adiabat shaping in inertial fusion implosions
    De Andrea Gonzalez, Angel
    4TH INTERNATIONAL WORKSHOP & SUMMER SCHOOL ON PLASMA PHYSICS 2010, 2014, 516
  • [44] Theoretical and simulation research of hydrodynamic instabilities ininertial-confinement fusion implosions
    Wang, LiFeng
    Ye, WenHua
    He, XianTu
    Wu, JunFeng
    Fan, ZhengFeng
    Xue, Chuang
    Guo, HongYu
    Miao, WenYong
    Yuan, YongTeng
    Dong, JiaQin
    Jia, Guo
    Zhang, Jing
    Li, YingJun
    Liu, Jie
    Wang, Min
    Ding, YongKun
    Zhang, WeiYan
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2017, 60 (05)
  • [45] Effect of cross-beam energy transfer on target-offset asymmetry in direct-drive inertial confinement fusion implosions
    Anderson, K. S.
    Forrest, C. J.
    Mannion, O. M.
    Marshall, F. J.
    Shah, R. C.
    Michel, D. T.
    Marozas, J. A.
    Radha, P. B.
    Edgell, D. H.
    Epstein, R.
    Goncharov, V. N.
    Knauer, J. P.
    Gatu Johnson, M.
    Laffite, S.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [46] Observations of Multiple Nuclear Reaction Histories and Fuel-Ion Species Dynamics in Shock-Driven Inertial Confinement Fusion Implosions
    Sio, H.
    Frenje, J. A.
    Le, A.
    Atzeni, S.
    Kwan, T. J. T.
    Johnson, M. Gatu
    Kagan, G.
    Stoeckl, C.
    Li, C. K.
    Parker, C. E.
    Forrest, C. J.
    Glebov, V.
    Kabadi, N. V.
    Bose, A.
    Rinderknecht, H. G.
    Amendt, P.
    Casey, D. T.
    Mancini, R.
    Taitano, W. T.
    Keenan, B.
    Simakov, A. N.
    Chacon, L.
    Regan, S. P.
    Sangster, T. C.
    Campbell, E. M.
    Seguin, F. H.
    Petrasso, R. D.
    PHYSICAL REVIEW LETTERS, 2019, 122 (03)
  • [47] Application of proton radiography in experiments of relevance to inertial confinement fusion
    Sarri, G.
    Borghesi, M.
    Cecchetti, C. A.
    Romagnani, L.
    Jung, R.
    Willi, O.
    Hoarty, D. J.
    Stevenson, R. M.
    Brown, C. R. D.
    James, S. F.
    Hobbs, P.
    Lockyear, J.
    Bulanov, S. V.
    Pegoraro, F.
    EUROPEAN PHYSICAL JOURNAL D, 2009, 55 (02) : 299 - 303
  • [48] Enhanced energy coupling for indirectly driven inertial confinement fusion
    Ping, Y.
    Smalyuk, V. A.
    Amendt, P.
    Tommasini, R.
    Field, J. E.
    Khan, S.
    Bennett, D.
    Dewald, E.
    Graziani, F.
    Johnson, S.
    Landen, O. L.
    MacPhee, A. G.
    Nikroo, A.
    Pino, J.
    Prisbrey, S.
    Ralph, J.
    Seugling, R.
    Strozzi, D.
    Tipton, R. E.
    Wang, Y. M.
    Loomis, E.
    Merritt, E.
    Montgomery, D.
    NATURE PHYSICS, 2019, 15 (02) : 138 - +
  • [49] Progress of indirect drive inertial confinement fusion in the United States
    Kline, J. L.
    Batha, S. H.
    Benedetti, L. R.
    Bennett, D.
    Bhandarkar, S.
    Hopkins, L. F. Berzak
    Biener, J.
    Biener, M. M.
    Bionta, R.
    Bond, E.
    Bradley, D.
    Braun, T.
    Callahan, D. A.
    Caggiano, J.
    Cerjan, C.
    Cagadas, B.
    Clark, D.
    Castro, C.
    Dewald, E. L.
    Doeppner, T.
    Divol, L.
    Dylla-Spears, R.
    Eckart, M.
    Edgell, D.
    Farrell, M.
    Field, J.
    Fittinghoff, D. N.
    Johnson, M. Gatu
    Grim, G.
    Haan, S.
    Haines, B. M.
    Hamza, A., V
    Hartouni, E. P.
    Hatarik, R.
    Henderson, K.
    Herrmann, H. W.
    Hinkel, D.
    Ho, D.
    Hohenberger, M.
    Hoover, D.
    Huang, H.
    Hoppe, M. L.
    Hurricane, O. A.
    Izumi, N.
    Johnson, S.
    Jones, O. S.
    Khan, S.
    Kozioziemski, B. J.
    Kong, C.
    Kroll, J.
    NUCLEAR FUSION, 2019, 59 (11)
  • [50] Design and Microfabrication of Cooling Arm for Inertial Confinement Fusion Application
    Xu, Bin
    Liu, Jing-quan
    Jiang, Shui-dong
    Tang, Gang
    Yan, Xiao-xiao
    Yang, Bin
    Chen, Xiang
    Yang, Chun-sheng
    SENSORS AND MATERIALS, 2015, 27 (11) : 1091 - 1101