Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions

被引:32
|
作者
Lees, A. [1 ,2 ]
Betti, R. [1 ,2 ,3 ]
Knauer, J. P. [1 ]
Gopalaswamy, V. [1 ,2 ]
Patel, D. [1 ,2 ]
Woo, K. M. [1 ]
Anderson, K. S. [1 ]
Campbell, E. M. [1 ]
Cao, D. [1 ]
Carroll-Nellenback, J. [1 ]
Epstein, R. [1 ]
Forrest, C. [1 ]
Goncharov, V. N. [1 ]
Harding, D. R. [1 ]
Hu, S. X. [1 ]
Igumenshchev, I. V. [1 ]
Janezic, R. T. [1 ]
Mannion, O. M. [1 ,3 ]
Radha, P. B. [1 ]
Regan, S. P. [1 ]
Shvydky, A. [1 ]
Shah, R. C. [1 ]
Shmayda, W. T. [1 ]
Stoeckl, C. [1 ]
Theobald, W. [1 ]
Thomas, C. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 E River Rd, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; DIRECT-DRIVE; IGNITION;
D O I
10.1103/PhysRevLett.127.105001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the l = 1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and l = 1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2 x 10(14) fusion reactions.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Instabilities and Mixing in Inertial Confinement Fusion
    Zhou, Ye
    Sadler, James D.
    Hurricane, Omar A.
    ANNUAL REVIEW OF FLUID MECHANICS, 2025, 57 : 197 - 225
  • [22] Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions
    Srinivasan, Bhuvana
    Tang, Xian-Zhu
    PHYSICS OF PLASMAS, 2014, 21 (10)
  • [23] Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Liu, Jie
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2016, 23 (12)
  • [24] Adiabat Shaping in Direct Drive Inertial Confinement Fusion Implosions through the Decaying Shock Approximation
    Mohammadkhani, Samira
    Ghasemizad, Abbas
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (03): : 1063 - 1072
  • [25] Performance scaling with an applied magnetic field in indirect-drive inertial confinement fusion implosions
    Sio, H.
    Moody, J. D.
    Pollock, B. B.
    Strozzi, D. J.
    Ho, D. D. M.
    Walsh, C. A.
    Kemp, G. E.
    Lahmann, B.
    Kucheyev, S. O.
    Kozioziemski, B.
    Carroll, E. G.
    Kroll, J.
    Yanagisawa, D. K.
    Angus, J.
    Bachmann, B.
    Baker, A. A.
    Bayu Aji, L. B.
    Bhandarkar, S. D.
    Bude, J. D.
    Divol, L.
    Engwall, A. M.
    Ferguson, B.
    Fry, J.
    Hagler, L.
    Hartouni, E.
    Herrmann, M. C.
    Hsing, W.
    Holunga, D. M.
    Javedani, J.
    Johnson, A.
    Khan, S.
    Kalantar, D.
    Kohut, T.
    Logan, B. G.
    Masters, N.
    Nikroo, A.
    Izumi, N.
    Orsi, N.
    Piston, K.
    Provencher, C.
    Rowe, A.
    Sater, J.
    Shin, S. J.
    Skulina, K.
    Stygar, W. A.
    Tang, V.
    Winters, S. E.
    Zimmerman, G.
    Chittenden, J. P.
    Appelbe, B.
    PHYSICS OF PLASMAS, 2023, 30 (07)
  • [26] Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets
    Borisenko, NG
    Akunets, AA
    Bushuev, VS
    Dorogotovtsev, VM
    Merkuliev, YA
    LASER AND PARTICLE BEAMS, 2003, 21 (04) : 505 - 509
  • [27] One-dimensional hydrodynamic simulations of low convergence ratio direct-drive inertial confinement fusion implosions
    Paddock, R. W.
    Martin, H.
    Ruskov, R. T.
    Scott, R. H. H.
    Garbett, W.
    Haines, B. M.
    Zylstra, A. B.
    Aboushelbaya, R.
    Mayr, M. W.
    Spiers, B. T.
    Wang, R. H. W.
    Norreys, P. A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2189):
  • [28] Gamma-ray imaging of inertial confinement fusion implosions reveals remaining ablator carbon distribution
    Geppert-Kleinrath, V.
    Hoffman, N.
    Birge, N.
    DeYoung, A.
    Fittinghoff, D.
    Freeman, M.
    Geppert-Kleinrath, H.
    Kim, Y.
    Meaney, K.
    Morgan, G.
    Rubery, M.
    Tafoya, L.
    Wilde, C.
    Volegov, P.
    PHYSICS OF PLASMAS, 2023, 30 (02)
  • [29] The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions
    Peterson, J. L.
    Michel, P.
    Thomas, C. A.
    Town, R. P. J.
    PHYSICS OF PLASMAS, 2014, 21 (07)
  • [30] Inertial confinement fusion: a defence context
    Randewich, Andrew
    Lock, Rob
    Garbett, Warren
    Bethencourt-Smith, Dominic
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2184):