Geometric Estimates of the First Eigenvalue of (p,q)-elliptic Quasilinear System Under Integral Curvature Condition

被引:1
作者
Habibi Vosta Kolaei, Mohammad Javad [1 ]
Azami, Shahroud [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2021年 / 34卷 / 04期
关键词
Eigenvalue; geometric estimate; integral curvature; (p; q)-elliptic quasilinear system; P-LAPLACIAN; MANIFOLDS; BOUNDS;
D O I
10.4208/jpde.v34.n4.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider (M,g) as a complete, simply connected Riemannian manifold. The aim of this paper is to provide various geometric estimates in different cases for the first eigenvalue of (p,q)-elliptic quasilinear system in both Dirichlet and Neumann conditions on Riemannian manifold. In some cases we add integral curvature condition and maybe we prove some theorems under other conditions.
引用
收藏
页码:348 / 368
页数:21
相关论文
共 27 条
[1]   Comparison estimates on the first eigenvalue of a quasilinear elliptic system [J].
Abolarinwa, Abimbola ;
Azami, Shah Roud .
JOURNAL OF APPLIED ANALYSIS, 2020, 26 (02) :273-285
[2]   Finiteness of π1 and geometric inequalities in almost positive Ricci curvature [J].
Aubry, Erwann .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (04) :675-695
[3]   THE FIRST EIGENVALUE OF SOME (p, q)-LAPLACIAN AND GEOMETRIC ESTIMATES [J].
Azami, Shahroud .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01) :317-323
[4]   On a system of reaction-diffusion equations describing a population with two age groups [J].
Brown, KJ ;
Zhang, YP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (02) :444-452
[5]   Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds [J].
Cavalletti, Fabio ;
Mondino, Andrea .
GEOMETRY & TOPOLOGY, 2017, 21 (01) :603-645
[6]  
Cheeger J., 2015, PROBLEMS ANAL S HONO, P195
[7]   Estimates on eigenvalues of Laplacian [J].
Cheng, QM ;
Yang, HC .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :445-460
[8]  
Cheng ShiuYuen., 1973, Differential geometry Proc. Sympos. Pure Math., VXXVII, P185
[9]   Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry [J].
Choi, YS ;
Huan, ZD ;
Lui, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (02) :406-432
[10]   Global solutions for quasilinear parabolic systems [J].
Constantin, A ;
Escher, J ;
Yin, ZY .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 197 (01) :73-84