A Conjecture on Optimal Ternary Linear Codes

被引:1
|
作者
Kawabata, Daiki [1 ]
Maruta, Tatsuya [1 ]
机构
[1] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
来源
PROCEEDINGS OF THE 2020 SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ALGEBRAIC AND COMBINATORIAL CODING THEORY (ACCT 2020): PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL WORKSHOP ON ALGEBRAIC AND COMBINATORIAL CODING THEORY ACCT 2020 | 2020年
关键词
linear code; Griesmer bound; projective dual;
D O I
10.1109/ACCT51235.2020.9383341
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a conjecture on the achievement of the Griesmer bound for ternary linear codes. We prove that our conjecture is valid for at most 7 dimensions.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 50 条
  • [1] On a Conjecture about a Class of Optimal Ternary Cyclic Codes
    Li, Nian
    Zhou, Zhengchun
    Helleseth, Tor
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 57 - 60
  • [2] NEW OPTIMAL TERNARY LINEAR CODES
    GULLIVER, TA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1182 - 1185
  • [3] ON OPTIMAL TERNARY LINEAR CODES OF DIMENSION 6
    Maruta, Tatsuya
    Oya, Yusuke
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2011, 5 (03) : 505 - 520
  • [4] Locality of Some Optimal Ternary Linear Codes
    Yang, Ruipan
    Li, Ruihu
    Guo, Luobin
    Fu, Qiang
    Rao, Yi
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 107 : 164 - 169
  • [5] Some New Optimal Ternary Linear Codes
    Boukliev I.
    Designs, Codes and Cryptography, 1997, 12 (1) : 5 - 11
  • [6] 5 NEW OPTIMAL TERNARY LINEAR CODES
    VANEUPEN, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (01) : 193 - 193
  • [7] On optimal non-projective ternary linear codes
    Takenaka, Mito
    Okamoto, Kei
    Maruta, Tatsuya
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 842 - 854
  • [8] Some new results for optimal ternary linear codes
    Bouyukliev, I
    Simonis, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 981 - 985
  • [9] Optimal Ternary Linear Rate 1/2 Codes
    T. Aaron Gulliver
    Nikolai Senkevitch
    Designs, Codes and Cryptography, 2001, 23 : 167 - 172
  • [10] Optimal ternary linear rate 1/2 codes
    Gulliver, TA
    Senkevitch, N
    DESIGNS CODES AND CRYPTOGRAPHY, 2001, 23 (02) : 167 - 171