Mountain pass solutions to equations of p-Laplacian type

被引:89
作者
De Nápoli, P [1 ]
Mariani, MC [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, FCEyN, RA-1428 Buenos Aires, DF, Argentina
关键词
p-Laplacian; multiple solutions; mountain pass theorem; uniform convexity; Clarkson inequality;
D O I
10.1016/S0362-546X(03)00105-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to study the existence of solutions to equations of p-Laplacian type. We prove the existence of at least one solution, and under further assumptions, the existence of infinitely many solutions. In order to apply mountain pass results, we introduce a notion of uniformly convex functional that generalizes the notion of uniformly convex norm. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1205 / 1219
页数:15
相关论文
共 14 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]   The prescribed mean curvature equation for nonparametric surfaces [J].
Amster, P ;
Mariani, MC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) :1069-1077
[4]  
Amster P., 1999, ABSTR APPL ANAL, V4, P61
[5]   Landesman-Lazer conditions and quasilinear elliptic equations [J].
Arcoya, D ;
Orsina, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) :1623-1632
[6]   Mountain pass type solutions for quasilinear elliptic equations [J].
Clément, P ;
García-Huidobro, M ;
Manásevich, R ;
Schmitt, K .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (01) :33-62
[7]  
DENAPOLI P, 2001, EL J DIFF EQ C 06, P131
[8]  
DENAPOLI P, 2002, ABSTR APPL ANAL, V7, P155
[9]  
Dinca G., 2001, PORT MATH, V58, P339
[10]  
GOSSEZ JP, 1998, REV UNION MAT ARGENT, V41, P79