Nanoprecipitation in a beta-titanium alloy

被引:54
作者
Coakley, James [1 ]
Vorontsov, Vassili A. [1 ]
Littrell, Kenneth C. [2 ]
Heenan, Richard K. [3 ]
Ohnuma, Masato [4 ]
Jones, Nicholas G. [5 ]
Dye, David [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[2] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA
[3] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[4] Hokkaido Univ, Lab Quantum Beam Syst Engn, Sapporo, Hokkaido 0600808, Japan
[5] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB2 3QZ, England
基金
英国工程与自然科学研究理事会;
关键词
Metals and alloys; Precipitation; Transmission Electron Microscopy; TEM; Neutron scattering; Titanium alloys; ANGLE NEUTRON-SCATTERING; HIGH-VOLUME FRACTION; NICKEL-BASE SUPERALLOY; PLASTIC-DEFORMATION; EVOLUTION; TEMPERATURE;
D O I
10.1016/j.jallcom.2014.10.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper represents the first application of small angle neutron scattering (SANS) to the study of precipitate nucleation and growth in beta-Ti alloys in an attempt to observe both the precipitation process in-situ and to quantify the evolving microstructure that affects mechanical behaviour. TEM suggests that athermal omega can be induced by cold-rolling Gum metal, a beta-Ti alloy. During thermal exposure at 400 degrees C, isothermal omega particles precipitate at a greater rate in cold-rolled material than in the recovered, hot deformed state. SANS modelling is consistent with disc shaped nanoparticles, with length and radius under 6 nm after thermal exposures up to 16 h. Modelling suggests that the nanoprecipitate volume fraction and extent of Nb partitioning to the beta matrix is greater in the cold-rolled material than the extruded. The results show that nucleation and growth of the nanoprecipitates impart strengthening to the alloy. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 156
页数:11
相关论文
共 42 条
[1]   STRUCTURE AND RESISTIVITY OF LIQUID METALS [J].
ASHCROFT, NW ;
LEKNER, J .
PHYSICAL REVIEW, 1966, 145 (01) :83-&
[2]   Omega phase transformation - morphologies and mechanisms [J].
Banerjee, S. ;
Tewari, R. ;
Dey, G. K. .
INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2006, 97 (07) :963-977
[3]   The use of β titanium alloys in the aerospace industry [J].
Boyer, RR ;
Briggs, RD .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2005, 14 (06) :681-685
[4]   Lattice strain evolution in a high volume fraction polycrystal nickel superalloy [J].
Coakley, James ;
Dye, David .
SCRIPTA MATERIALIA, 2012, 67 (05) :435-438
[5]   Lattice strain evolution during creep in single-crystal superalloys [J].
Coakley, James ;
Reed, Roger C. ;
Warwick, Jonnathan L. W. ;
Rahman, Khandaker M. ;
Dye, David .
ACTA MATERIALIA, 2012, 60 (6-7) :2729-2738
[6]   Characterization of Gamma Prime (γ′) Precipitates in a Polycrystalline Nickel-Base Superalloy Using Small-Angle Neutron Scattering [J].
Collins, D. M. ;
Heenan, R. K. ;
Stone, H. J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (01) :49-59
[7]   Evidence of variation in slip mode in a polycrystalline nickel-base superalloy with change in temperature from neutron diffraction strain measurements [J].
Daymond, M. R. ;
Preuss, M. ;
Clausen, B. .
ACTA MATERIALIA, 2007, 55 (09) :3089-3102
[8]  
Deurig T.W., 1984, BETA TITANIUM 1980S, P19
[9]  
Dye D., 2009, SCRIPTA MATER, V48, P525
[10]  
Furuta T., 2004, TI 2003 SCI TECHNOLO, P1519