Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom

被引:39
作者
Ren, Manman [1 ]
Guo, Xiangyu [2 ,3 ]
Huang, Shiping [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Shenzhen JL Computat Sci & Appl Res Inst, Shenzhen 518110, Peoples R China
[3] Beijing Computat Sci Res Ctr CSRC, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalytic CO2 reduction; Single-atom catalysts; Coordination tuning; Density functional theory computations; NITROGEN REDUCTION REACTION; ELASTIC BAND METHOD; ELECTROCHEMICAL REDUCTION; OXYGEN REDUCTION; GRAPHENE; NUMBER; PERFORMANCE; SELECTIVITY; ACTIVATION; ELECTRODES;
D O I
10.1016/j.cej.2021.134270
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Designing of effective electrocatalysts for electrocatalytic CO2 reduction into value-added chemicals is the key to reducing CO2 concentration and achieving carbon neutrality. However, achieving high activity and product selectivity simultaneously remains a significant challenge. Herein, a series of Fe single-atom catalysts coordinated by B atoms, namely FeBxCy (x + y = 3 or 4), are constructed to systematically investigate the electrocatalytic CO2 reduction reaction (CO2RR) based on density functional theory computations. Eight catalysts, including FeO4, are identified that can effectively activate CO2 molecules and significantly inhibit competitive hydrogen evolution reaction (HER). Among them, FeB2C and FeB(2)C(2)h (h represents a cis structure) show the higher CO2RR activity with the less negative limiting potentials of-0.24 and-0.40 V toward production of CH4, indicating the optimal content for doping B atoms. The activity mechanism shows that d-band center and magnetic moment of central Fe atom can be manipulated by rational modulating the coordinated B atoms to improve the CO2RR performance. By the coordinated B atom, an optimal adsorption strength of the reaction intermediates can be achieved on the FeBxCy surface, and thereby increasing CO2RR catalytic activity and product selectivity. FeB2C with more negative d-band center and the optimal Fe atomic magnetic moment shows the best CO2RR performance. These results reveal a great potential of coordination tuning for CO2RR, and provide a new theoretical perspective for rational design of high activity, selective CO2RR catalysts.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CO electroreduction on single-atom copper
    Wang, Yuxuan
    Li, Boyang
    Xue, Bin
    Libretto, Nicole
    Xie, Zhenhua
    Shen, Hao
    Wang, Canhui
    Raciti, David
    Marinkovic, Nebojsa
    Zong, Han
    Xie, Wenjun
    Li, Ziyuan
    Zhou, Guangye
    Vitek, Jeff
    Chen, Jingguang G.
    Miller, Jeffery
    Wang, Guofeng
    Wang, Chao
    SCIENCE ADVANCES, 2023, 9 (30)
  • [22] Construction of single-atom copper sites with low coordination number for efficient CO2 electroreduction to CH4
    Wei, Shaomin
    Jiang, Xingxing
    He, Congyi
    Wang, Siyu
    Hu, Qi
    Chai, Xiaoyan
    Ren, Xiangzhong
    Yang, Hengpan
    He, Chuanxin
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 6187 - 6192
  • [23] Achieving Efficient CO2 Electrolysis to CO by Local Coordination Manipulation of Nickel Single-Atom Catalysts
    Chen, Zhaoyang
    Wang, Chuanhao
    Zhong, Xian
    Lei, Hao
    Li, Jiawei
    Ji, Yuan
    Liu, Chunxiao
    Ding, Mao
    Dai, Yizhou
    Li, Xu
    Zheng, Tingting
    Jiang, Qiu
    Peng, Hong-Jie
    Xia, Chuan
    NANO LETTERS, 2023, 23 (15) : 7046 - 7053
  • [24] Homonuclear multi-atom catalysts for CO2 electroreduction: a comparison density functional theory study with their single-atom counterparts
    Xiao, Jingjing
    Liu, Ziyang
    Wang, Xinshuang
    Li, Fengyu
    Zhao, Zhonglong
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (46) : 25662 - 25670
  • [25] A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction
    Feng, Jiaqi
    Gao, Hongshuai
    Zheng, Lirong
    Chen, Zhipeng
    Zeng, Shaojuan
    Jiang, Chongyang
    Dong, Haifeng
    Liu, Licheng
    Zhang, Suojiang
    Zhang, Xiangping
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [26] Coordination-tuned Ru single-atom catalyst for efficient catalysis of CO 2 to CH 4 on RuB x N 4-x @TiN (x=0-4)
    Pan, Junhui
    Kong, Yuehua
    Li, Yi
    Zhang, Yongfan
    Lin, Wei
    JOURNAL OF CO2 UTILIZATION, 2024, 84
  • [27] Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4
    Han, Lili
    Song, Shoujie
    Liu, Mingjie
    Yao, Siyu
    Liang, Zhixiu
    Cheng, Hao
    Ren, Zhouhong
    Liu, Wei
    Lin, Ruoqian
    Qi, Gaocan
    Liu, Xijun
    Wu, Qin
    Luo, Jun
    Xin, Huolin L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (29) : 12563 - 12567
  • [28] Modulating Electronic Density of Single-Atom Ni Center by Heteroatoms for Efficient CO2 Electroreduction
    Chen, Yang
    Pan, Xiaoli
    Li, Lin
    Chen, Meixin
    Cao, Hongchen
    Zhao, Yang
    Wang, Xiaodong
    Lin, Jian
    SMALL, 2025, 21 (09)
  • [29] Coordination Desymmetrization of Copper Single-Atom Catalyst for Efficient Nitrate Reduction
    Gu, Zhengxiang
    Zhang, Yechuan
    Fu, Yang
    Hu, Dandan
    Peng, Fang
    Tang, Yawen
    Yang, Huajun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (38)
  • [30] Single-atom catalysts on supported silicomolybdic acid for CO2 electroreduction: a DFT prediction
    Zhao, Congcong
    Su, Xiaofang
    Wang, Shuo
    Tian, Yu
    Yan, Likai
    Su, Zhongmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 6178 - 6186