Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom

被引:39
|
作者
Ren, Manman [1 ]
Guo, Xiangyu [2 ,3 ]
Huang, Shiping [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Shenzhen JL Computat Sci & Appl Res Inst, Shenzhen 518110, Peoples R China
[3] Beijing Computat Sci Res Ctr CSRC, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrocatalytic CO2 reduction; Single-atom catalysts; Coordination tuning; Density functional theory computations; NITROGEN REDUCTION REACTION; ELASTIC BAND METHOD; ELECTROCHEMICAL REDUCTION; OXYGEN REDUCTION; GRAPHENE; NUMBER; PERFORMANCE; SELECTIVITY; ACTIVATION; ELECTRODES;
D O I
10.1016/j.cej.2021.134270
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Designing of effective electrocatalysts for electrocatalytic CO2 reduction into value-added chemicals is the key to reducing CO2 concentration and achieving carbon neutrality. However, achieving high activity and product selectivity simultaneously remains a significant challenge. Herein, a series of Fe single-atom catalysts coordinated by B atoms, namely FeBxCy (x + y = 3 or 4), are constructed to systematically investigate the electrocatalytic CO2 reduction reaction (CO2RR) based on density functional theory computations. Eight catalysts, including FeO4, are identified that can effectively activate CO2 molecules and significantly inhibit competitive hydrogen evolution reaction (HER). Among them, FeB2C and FeB(2)C(2)h (h represents a cis structure) show the higher CO2RR activity with the less negative limiting potentials of-0.24 and-0.40 V toward production of CH4, indicating the optimal content for doping B atoms. The activity mechanism shows that d-band center and magnetic moment of central Fe atom can be manipulated by rational modulating the coordinated B atoms to improve the CO2RR performance. By the coordinated B atom, an optimal adsorption strength of the reaction intermediates can be achieved on the FeBxCy surface, and thereby increasing CO2RR catalytic activity and product selectivity. FeB2C with more negative d-band center and the optimal Fe atomic magnetic moment shows the best CO2RR performance. These results reveal a great potential of coordination tuning for CO2RR, and provide a new theoretical perspective for rational design of high activity, selective CO2RR catalysts.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Accelerating CO2 Electroreduction to CO Over Pd Single-Atom Catalyst
    He, Qun
    Lee, Ji Hoon
    Liu, Daobin
    Liu, Yumeng
    Lin, Zhexi
    Xie, Zhenhua
    Hwang, Sooyeon
    Kattel, Shyam
    Song, Li
    Chen, Jingguang G.
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (17)
  • [2] Highly Efficient CO2 Electroreduction on ZnN4-based Single-Atom Catalyst
    Yang, Fa
    Song, Ping
    Liu, Xiaozhi
    Mei, Bingbao
    Xing, Wei
    Jiang, Zheng
    Gu, Lin
    Xu, Weilin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (38) : 12303 - 12307
  • [3] Hybrid Catalyst Coupling Single-Atom Ni and Nanoscale Cu for Efficient CO2 Electroreduction to Ethylene
    Yin, Zhouyang
    Yu, Jiaqi
    Yu, Shen-Wei
    Xie, Zhenhua
    Zhang, Liyue
    Akauola, Tangi
    Chen, Jingguang G.
    Huang, Wenyu
    Qi, Long
    Zhang, Sen
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (45) : 20931 - 20938
  • [4] Efficient and Selective Electroreduction of CO2 by Single-Atom Catalyst Two-Dimensional TM-Pc Monolayers
    Liu, Jin-Hang
    Yang, Li-Ming
    Ganz, Eric
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (11): : 15494 - 15502
  • [5] Single-Atom Catalysts and Dual-Atom Catalysts for CO2 Electroreduction: Competition or Cooperation?
    Shao, Yueyue
    Yuan, Qunhui
    Zhou, Jia
    SMALL, 2023, 19 (40)
  • [6] Highly Ordered Hierarchical Porous Single-Atom Fe Catalyst with Promoted Mass Transfer for Efficient Electroreduction of CO2
    Jia, Chen
    Zhao, Yong
    Song, Shuang
    Sun, Qian
    Meyer, Quentin
    Liu, Shiyang
    Shen, Yansong
    Zhao, Chuan
    ADVANCED ENERGY MATERIALS, 2023, 13 (37)
  • [7] Recent progress on single-atom catalysts for CO2 electroreduction
    Liu, Juan
    Cai, Yanming
    Song, Rongbin
    Ding, Shichao
    Lyu, Zhaoyuan
    Chang, Yu-Chung
    Tian, Hangyu
    Zhang, Xiao
    Du, Dan
    Zhu, Wenlei
    Zhou, Yang
    Lin, Yuehe
    MATERIALS TODAY, 2021, 48 : 95 - 114
  • [8] Boosting CO2 Electroreduction over a Cadmium Single-Atom Catalyst by Tuning of the Axial Coordination Structure
    Wu, Yahui
    Chen, Chunjun
    Yan, Xupeng
    Sun, Xiaofu
    Zhu, Qinggong
    Li, Pengsong
    Li, Yiming
    Liu, Shoujie
    Ma, Jingyuan
    Huang, Yuying
    Han, Buxing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (38) : 20803 - 20810
  • [9] Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements
    Back, Seoin
    Lim, Juhyung
    Kim, Na-Young
    Kim, Yong-Hyun
    Jung, Yousung
    CHEMICAL SCIENCE, 2017, 8 (02) : 1090 - 1096
  • [10] Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol
    Yang, Hengpan
    Wu, Yu
    Li, Guodong
    Lin, Qing
    Hu, Qi
    Zhang, Qanling
    Liu, Jianhong
    He, Chuanxin
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (32) : 12717 - 12723