Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries

被引:131
作者
Patra, Bidhan Chandra [1 ]
Das, Sabuj Kanti [2 ]
Ghosh, Arnab [3 ]
Raj, Anish K. [3 ]
Moitra, Parikshit [4 ]
Addicoat, Matthew [5 ]
Mitra, Sagar [3 ]
Bhaumik, Asim [2 ]
Bhattacharya, Santanu [1 ]
Pradhan, Anirban [1 ]
机构
[1] Indian Assoc Cultivat Sci, Directors Res Unit, Kolkata 700032, India
[2] Indian Assoc Cultivat Sci, Dept Mat Sci, Kolkata 700032, India
[3] Indian Inst Technol, Dept Energy Sci & Engn, Bombay 400076, Maharashtra, India
[4] Indian Assoc Cultivat Sci, Tech Res Ctr, Kolkata 700032, India
[5] Nottingham Trent Univ, Sch Sci & Technol, Clifton Lane, Nottingham NG11 8NS, England
关键词
ELECTRICAL ENERGY-STORAGE; LITHIUM-ION BATTERIES; HYDROGEN EVOLUTION; PROTON CONDUCTION; CARBON NANOTUBES; CO2; ADSORPTION; HIGH-CAPACITY; DFTB METHOD; CRYSTALLINE; POLYMER;
D O I
10.1039/c8ta04611e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Covalent organic frameworks (COFs) promise several benefits as materials in terms of gas adsorption, for use in optoelectronic devices, etc. However, the energy storage ability of COFs has not been well studied, especially in sodium batteries. In this report, for the first time, a covalent organic framework (COF), TFPB-TAPT COF, is used as an anode with high capacity in sodium batteries. The TFPB-TAPT COF exhibits an initial reversible capacity of 246 mA h g(-1) and a capacity of 125 mA h g(-1) is retained after 500 cycles. The TFPB-TAPT COF further exhibits Na+ ion storage capability at different current rates. The Na+ ion storage viability of the TFPB-TAPT COF arises mainly because of its open ordered nanoporous framework, which provides reversible accommodation for ions. This work opens up a promising new approach for further utilization of COFs as electrode materials in rechargeable sodium batteries.
引用
收藏
页码:16655 / 16663
页数:9
相关论文
共 61 条
[1]   AuToGraFS: Automatic Topological Generator for Framework Structures [J].
Addicoat, Matthew A. ;
Coupry, Damien E. ;
Heine, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (40) :9607-9614
[2]   DFTB+, a sparse matrix-based implementation of the DFTB method [J].
Aradi, B. ;
Hourahine, B. ;
Frauenheim, Th. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (26) :5678-5684
[3]   Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries [J].
Bai, Linyi ;
Gao, Qiang ;
Zhao, Yanli .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (37) :14106-14110
[4]   H2 Evolution with Covalent Organic Framework Photocatalysts [J].
Banerjee, Tanmay ;
Gottschling, Kerstin ;
Savasci, Goekcen ;
Ochsenfeld, Christian ;
Lotsch, Bettina V. .
ACS ENERGY LETTERS, 2018, 3 (02) :400-409
[5]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[6]   Electrochemical Stimuli-Driven Facile Metal-Free Hydrogen Evolution from Pyrene-Porphyrin-Based Crystalline Covalent Organic Framework [J].
Bhunia, Subhajit ;
Das, Sabuj Kanti ;
Jana, Rajkumar ;
Peter, Sebastian C. ;
Bhattacharya, Santanu ;
Addicoat, Matthew ;
Bhaumik, Asim ;
Pradhan, Anirban .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) :23843-23851
[7]   Covalent Organic Frameworks as a Platform for Multidimensional Polymerization [J].
Bisbey, Ryan P. ;
Dichtel, William R. .
ACS CENTRAL SCIENCE, 2017, 3 (06) :533-543
[8]   Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity [J].
Bojdys, Michael J. ;
Jeromenok, Jekaterina ;
Thomas, Arne ;
Antonietti, Markus .
ADVANCED MATERIALS, 2010, 22 (19) :2202-+
[9]  
Carrasco J., 2015, ENERG ENVIRON SCI, V8, P3233
[10]   Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries** [J].
Castillo-Martinez, Elizabeth ;
Carretero-Gonzalez, Javier ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (21) :5341-5345