Three-Axial Accelerometer Calibration Using Kalman Filter Covariance Matrix for Online Estimation of Optimal Sensor Orientation

被引:70
作者
Beravs, Tadej [1 ]
Podobnik, Janez [1 ]
Munih, Marko [1 ]
机构
[1] Univ Ljubljana, Robot Lab, Dept Measurement & Robot, Fac Elect Engn, Ljubljana 1000, Slovenia
关键词
Accelerometer calibration; orientation determination; sensor parameter estimation; unscented Kalman filtering (UKF); KINEMATICS; SYSTEM;
D O I
10.1109/TIM.2012.2187360
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Inexpensive inertial/magnetic measurement units can be found in numerous applications and are typically used to determine orientation. Due to the presence of nonidealities in measurement systems, the calibration of the sensor is thus needed to determine sensor parameters such as bias, misalignment, and gain/sensitivity. In this paper, an online automatic calibration method for a three-axial accelerometer is presented. Parameters are estimated using an unscented Kalman filter. The sensor is placed in a number of different orientations using a robotic arm. These orientations are calculated online from the parameter covariance matrix and represent estimated optimal sensor orientations for parameter estimation. Numerous simulations are run to evaluate the proposed calibration method, and a comparison is made with an offline least mean squares calibration method. The simulation results show that calibration with the proposed method results in higher accuracy of parameter estimation when using less than 100 iterations. The proposed calibration method is also applied to a real accelerometer using a low number of iterations. The results show only slight (less than 0.4%) changes in parameter values between different calibration runs. The proposed calibration method provides an accurate parameter estimation using a small number of iterations without the need for manually pre-defining orientations of the sensor, and the method can be used in combination with other offline calibration methods to achieve even higher accuracy.
引用
收藏
页码:2501 / 2511
页数:11
相关论文
共 20 条
[1]  
Ambadan JT, 2009, J ATMOS SCI, V66, P261, DOI [10.1175/2008JAS2681.1, 10.1175/200SJAS2681.1]
[2]  
[Anonymous], 2006, Pattern recognition and machine learning
[3]  
Bachmann E. R., 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375), P187, DOI 10.1109/CIRA.1999.810047
[4]   Accelerometer Calibration and Dynamic Bias and Gravity Estimation: Analysis, Design, and Experimental Evaluation [J].
Batista, Pedro ;
Silvestre, Carlos ;
Oliveira, Paulo ;
Cardeira, Bruno .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (05) :1128-1137
[5]   Calibration methods for inertial and magnetic sensors [J].
Bonnet, S. ;
Bassompierre, C. ;
Godin, C. ;
Lesecq, S. ;
Barraud, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 156 (02) :302-311
[6]  
Camps F, 2009, INT CONF ELECTRO INF, P215
[7]   Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles [J].
Grenon, G ;
An, PE ;
Smith, SM ;
Healey, AJ .
IEEE JOURNAL OF OCEANIC ENGINEERING, 2001, 26 (04) :548-560
[8]   Calibration and data fusion solution for the miniature attitude and heading reference system [J].
Jurman, David ;
Jankovec, Marko ;
Kamnik, Roman ;
Topic, Marko .
SENSORS AND ACTUATORS A-PHYSICAL, 2007, 138 (02) :411-420
[9]   Initial calibration of an inertial measurement unit using an optical position tracking system [J].
Kim, A ;
Golnaraghi, MF .
PLANS 2004: POSITION LOCATION AND NAVIGATION SYMPOSIUM, 2004, :96-101
[10]  
Kuga H., 2007, P 19 COBEM BRAS DF B