Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications

被引:20
作者
Fonollosa, J. [1 ]
Rubio, R. [2 ]
Hartwig, S. [3 ]
Marco, S. [1 ]
Santander, J. [2 ]
Fonseca, L. [2 ]
Woellenstein, J. [3 ]
Moreno, M. [1 ]
机构
[1] Univ Barcelona, Dept Elect, Barcelona, Spain
[2] Ctr Nacl Microelect IMB CSIC, Barcelona, Spain
[3] Fraunhofer Inst Phys Measurement Tech, Freiburg, Germany
关键词
fresnel lenses; optical gas sensor; microoptics; silicon technology; ethylene; non-dispersive infrared gas sensor;
D O I
10.1016/j.snb.2007.11.014
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To improve the sensitivity of a non-dispersive infrared optical gas sensor, diffractive Fresnel lenses have been designed, fabricated with silicon microtechnologies, and tested. The target gases (for fruit storage applications) determine the wavelengths for the lens design: 10.6 mu m, 9.7 mu m, 3.5 mu m, and 3.9 mu m for ethylene, ammonia, ethanol, and the reference band, respectively. Four lenses are fabricated on the same silicon substrate in a combined multi-lens. In order to reduce the number of photolithographic steps, a new design based on sharing up to sixteen quantization steps by the four lenses is done. Due to the high reflection losses at the silicon-air surfaces, some multi-lenses have been coated with zinc sulphide antireflection layers. The difference between the measured and the target focal length is smaller than 5%. Alignment fixtures have been fabricated to assemble the Fresnel lenses chip on the detector lid in the correct orientation. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 20 条
[1]   High performance CVD-diamond-based thermocouple for gas sensing [J].
Balducci, A ;
D'Amico, A ;
Di Natale, C ;
Marinelli, M ;
Milani, E ;
Morgada, ME ;
Pucella, G ;
Rodriguez, G ;
Tucciarone, A ;
Verona-Rinati, G .
SENSORS AND ACTUATORS B-CHEMICAL, 2005, 111 :102-105
[2]   Design and fabrication of a thermal infrared emitter [J].
Bauer, D ;
Heeger, M ;
Gebhard, M ;
Benecke, W .
SENSORS AND ACTUATORS A-PHYSICAL, 1996, 55 (01) :57-63
[3]  
FONOLLOSA J, 2006, P SOC PHOTO-OPT INS
[4]   Feasibility of a flip-chip approach to integrate an IR filter and an IR detector in a future gas detection cell [J].
Fonseca, L ;
Cabruja, E ;
Calaza, C ;
Rubio, R ;
Santander, J ;
Figueras, E ;
Gràcia, I ;
Cané, C ;
Moreno, M ;
Marco, S .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2004, 10 (05) :382-386
[5]   AFM thermal imaging as an optimization tool for a bulk micromachined thermopile [J].
Fonseca, L ;
Pérez-Murano, F ;
Calaza, C ;
Rubio, R ;
Santander, J ;
Figueras, E ;
Gràcia, I ;
Cané, C ;
Moreno, M ;
Marco, S .
SENSORS AND ACTUATORS A-PHYSICAL, 2004, 115 (2-3) :440-446
[6]   2-DIMENSIONAL ARRAY OF DIFFRACTIVE MICROLENSES FABRICATED BY THIN-FILM DEPOSITION [J].
JAHNS, J ;
WALKER, SJ .
APPLIED OPTICS, 1990, 29 (07) :931-936
[7]   Micromachined IR-source with excellent blackbody like behaviour [J].
Konz, W ;
Hildenbrand, J ;
Bauersfeld, M ;
Hartwig, S ;
Lambrecht, A ;
Lehmann, V ;
Wöllenstein, J .
Smart Sensors, Actuators, and MEMS II, 2005, 5836 :540-548
[8]   ENCODING OF EFFICIENT DIFFRACTIVE MICROLENSES [J].
KUITTINEN, M ;
HERZIG, HP .
OPTICS LETTERS, 1995, 20 (21) :2156-2158
[9]   Tunable optical filter of porous silicon as key component for a MEMS spectrometer [J].
Lammel, G ;
Schweizer, S ;
Schiesser, S ;
Renaud, P .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2002, 11 (06) :815-828
[10]  
LEVY U, 2000, OPTICAL SOC AM, V18, P86