Computing the optimal bridge between two convex polygons

被引:10
|
作者
Cai, LZ
Xu, YF
Zhu, BH [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Engn & Sci, Shatin, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian, Peoples R China
[4] Laurentian Univ, Dept Math & Comp Sci, Sudbury, ON P3E 2C6, Canada
关键词
computational geometry; discrete optimization; approximation;
D O I
10.1016/S0020-0190(99)00003-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an efficient algorithm for solving the following problem. Given two disjoint convex polygonal regions P, Q in the plane, add a line segment to connect them so as to minimize the maximum of the distances between points in one region and points in the other region. An O(n(2) log n) time algorithm is presented to find such a line segment (optimal bridge) (p, q), where n is the maximal cardinality of P, e. We also present a very simple linear time constant factor approximate solution for this problem. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 50 条
  • [21] Packing convex polygons in minimum-perimeter convex hulls
    Josef Kallrath
    Tatiana Romanova
    Alexander Pankratov
    Igor Litvinchev
    Luis Infante
    Journal of Global Optimization, 2023, 85 : 39 - 59
  • [22] Computing vision points in polygons
    Carlsson, S
    Nilsson, BJ
    ALGORITHMICA, 1999, 24 (01) : 50 - 75
  • [23] COMPUTING SIGNED PERMUTATIONS OF POLYGONS
    Aloupis, Greg
    Bose, Prosenjit
    Demaine, Erik D.
    Langerman, Stefan
    Meijer, Henk
    Overmars, Mark
    Toussaint, Godfried T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (01) : 87 - 100
  • [24] Optimal algorithms for computing the minimum distance between two finite planar sets
    Toussaint, Godfried T.
    Bhattacharya, Binay K.
    PATTERN RECOGNITION LETTERS, 1983, 2 (02) : 79 - 82
  • [25] COVERING CONVEX RECTILINEAR POLYGONS IN LINEAR TIME
    Liou, W. T.
    Tang, C. Y.
    Lee, R. C. T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1991, 1 (02) : 137 - 185
  • [26] Efficient algorithm for transversal of disjoint convex polygons
    Chin, FYL
    Wang, FL
    INFORMATION PROCESSING LETTERS, 2002, 83 (03) : 141 - 144
  • [27] A simple linear algorithm for intersecting convex polygons
    Toussaint, Godfried T.
    VISUAL COMPUTER, 1985, 1 (02): : 118 - 123
  • [28] A COUNTEREXAMPLE TO A CONVEX-HULL ALGORITHM FOR POLYGONS
    TOUSSAINT, G
    PATTERN RECOGNITION, 1991, 24 (02) : 183 - 184
  • [29] COUNTING CONVEX POLYGONS IN PLANAR POINT SETS
    MITCHELL, JSB
    ROTE, G
    SUNDARAM, G
    WOEGINGER, G
    INFORMATION PROCESSING LETTERS, 1995, 56 (01) : 45 - 49
  • [30] COUNTING THIN AND BUSHY TRIANGULATIONS OF CONVEX POLYGONS
    CHATTOPADHYAY, S
    DAS, PP
    PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 139 - 144