Hard-wall and non-uniform lattice Monte Carlo approaches to one-dimensional Fermi gases in a harmonic trap

被引:6
作者
Berger, Casey E. [1 ]
Drut, Joaquin E. [1 ]
Porter, William J. [1 ]
机构
[1] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Ultracold gases; Harmonic trap; Quantum Monte Carlo; FOURIER ACCELERATION;
D O I
10.1016/j.cpc.2016.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in external trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and a non-uniform Gauss-Hermite lattice approach. Using those two methods, we compute the ground-state energy and spatial density profile for systems of N = 4-8 harmonically trapped fermions in one dimension. From the favorable comparison of both energies and density profiles (particularly in regions of low density), we conclude that the trapping potential is properly resolved by the hard-wall basis. Our work paves the way to higher dimensions and finite temperature analyses, as calculations with the hard-wall basis can be accelerated via fast Fourier transforms; the cost of unaccelerated methods is otherwise prohibitive due to the unfavorable scaling with system size. To illustrate this point, we show a brief performance comparison of accelerated versus unaccelerated methods across spatial dimensions. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 28 条
[1]  
Assaad F.F., 2008, Computational Many-Particle Physics
[2]   Interacting fermions in highly elongated harmonic traps [J].
Astrakharchik, GE ;
Blume, D ;
Giorgini, S ;
Pitaevskii, LP .
PHYSICAL REVIEW LETTERS, 2004, 93 (05) :050402-1
[3]   FOURIER ACCELERATION OF RELAXATION PROCESSES IN DISORDERED-SYSTEMS [J].
BATROUNI, GG ;
HANSEN, A ;
NELKIN, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (11) :1336-1339
[4]   Energy, contact, and density profiles of one-dimensional fermions in a harmonic trap via nonuniform-lattice Monte Carlo calculations [J].
Berger, C. E. ;
Anderson, E. R. ;
Drut, J. E. .
PHYSICAL REVIEW A, 2015, 91 (05)
[5]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[6]  
Bulirsch R., 2002, INTRO NUMERICAL ANAL, P171
[7]   Two cold atoms in a harmonic trap [J].
Busch, T ;
Englert, BG ;
Rzazewski, K ;
Wilkens, M .
FOUNDATIONS OF PHYSICS, 1998, 28 (04) :549-559
[8]   Pairing of a few Fermi atoms in one dimension [J].
D'Amico, Pino ;
Rontani, Massimo .
PHYSICAL REVIEW A, 2015, 91 (04)
[9]   LANGEVIN SIMULATIONS OF LATTICE FIELD-THEORIES USING FOURIER ACCELERATION [J].
DAVIES, C ;
BATROUNI, G ;
KATZ, G ;
KRONFELD, A ;
LEPAGE, P ;
ROSSI, P ;
SVETITSKY, B ;
WILSON, K .
JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (5-6) :1073-1075
[10]   Lattice methods for strongly interacting many-body systems [J].
Drut, Joaquin E. ;
Nicholson, Amy N. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2013, 40 (04)