ANALYSIS OF A NONLOCAL MODEL FOR SPONTANEOUS CELL POLARIZATION

被引:12
作者
Calvez, Vincent [1 ,2 ]
Hawkins, Rhoda J. [3 ]
Meunier, Nicolas [4 ]
Voituriez, Raphael [3 ]
机构
[1] Ecole Normale Super Lyon, Unite Math Pures & Appl, CNRS UMR 5669, F-69364 Lyon, France
[2] Ecole Normale Super Lyon, Equipe Project INRIA NUMED, F-69364 Lyon, France
[3] Univ Paris 06, Lab Matiere Condensee, CNRS UMR 7600, F-75255 Paris 05, France
[4] Univ Paris 05, MAP5, CNRS UMR 8145, F-75006 Paris, France
关键词
cell polarization; global existence; blow-up; asymptotic convergence; entropy method; Keller-Segel system; KELLER-SEGEL MODEL; POINT DYNAMICS; SINGULAR LIMIT; BLOW-UP; CHEMOTAXIS;
D O I
10.1137/11083486X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the dynamics of a nonlocal model describing spontaneous cell polarization. It consists of a drift-diffusion equation set in the half-space, with the coupling involving the trace value on the boundary. We characterize the following behaviors in the one-dimensional case: solutions are global if the mass is below the critical mass and they blow up in finite time above the critical mass. The higher-dimensional case is also discussed. The results are reminiscent of the classical Keller-Segel system, but critical spaces are different (L-N instead of L-N/2 due to the coupling on the boundary). In addition, in the one-dimensional case we prove quantitative convergence results using relative entropy techniques. This work is complemented with a more realistic model that takes into account dynamical exchange of molecular content at the boundary. In the one-dimensional case we prove that blow-up is prevented. Furthermore, density converges toward a nontrivial stationary configuration.
引用
收藏
页码:594 / 622
页数:29
相关论文
共 37 条
  • [1] Adams R., 1985, Sobolev Spaces
  • [2] Alberts B., 2002, The shape and structure of proteins, Vfourth, DOI 10.1093/aob/mcg023
  • [3] AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
  • [4] Best constants in Sobolev trace inequalities
    Biezuner, RJ
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) : 575 - 589
  • [5] Global and exploding solutions for nonlocal quadratic evolution problems
    Biler, P
    Woyczynski, WA
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (03) : 845 - 869
  • [6] Biler P., 1995, Colloq. Math, V68, P229, DOI DOI 10.4064/CM-68-2-229-239
  • [7] Blanchet A., 2006, ELECT J DIFFERENTIAL, V44
  • [8] Calvez V., P AM MATH S IN PRESS
  • [9] Calvez V., 2007, NONLINEAR PARTIAL DI, V429
  • [10] Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension
    Calvez, Vincent
    Corrias, Lucilla
    Ebde, Mohamed Abderrahman
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 561 - 584