Predicting Progression-Free Survival Using MRI-Based Radiomics for Patients With Nonmetastatic Nasopharyngeal Carcinoma

被引:47
作者
Shen, Hesong [1 ,2 ,3 ,4 ]
Wang, Yu [1 ,2 ,3 ,4 ]
Liu, Daihong [1 ,2 ,3 ,4 ]
Lv, Rongfei [5 ]
Huang, Yuanying [6 ]
Peng, Chao [5 ]
Jiang, Shixi [1 ,2 ,3 ]
Wang, Ying [2 ,3 ,7 ]
He, Yongpeng [2 ,3 ,8 ]
Lan, Xiaosong [1 ,2 ,3 ]
Huang, Hong [5 ]
Sun, Jianqing [9 ]
Zhang, Jiuquan [1 ,2 ,3 ,4 ]
机构
[1] Chongqing Univ, Canc Hosp, Dept Radiol, Chongqing, Peoples R China
[2] Chongqing Canc Inst, Chongqing, Peoples R China
[3] Chongqing Canc Hosp, Chongqing, Peoples R China
[4] Chongqing Univ, Minist Educ, Key Lab Biorheol Sci & Technol, Canc Hosp, Chongqing, Peoples R China
[5] Chongqing Univ, Educ Minist China, Key Lab Optoelect Technol & Syst, Chongqing, Peoples R China
[6] Chongqing Gen Hosp, Dept Oncol & Hematol, Chongqing, Peoples R China
[7] Chongqing Univ, Canc Hosp, Dept Radiotherapy, Chongqing, Peoples R China
[8] Chongqing Univ, Canc Hosp, Chongqing Key Lab Translat Res Canc Metastasis &, Chongqing, Peoples R China
[9] Philips Healthcare, Clin Sci, Shanghai, Peoples R China
基金
中央高校基本科研业务费专项资金资助;
关键词
radiomics; prediction; progression-free survival; nasopharyngeal carcinoma; magnetic resonance imaging; PRIMARY END-POINT; 8TH EDITION; STAGE; CANCER;
D O I
10.3389/fonc.2020.00618
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: This study aimed to explore the predictive value of MRI-based radiomic model for progression-free survival (PFS) in nonmetastatic nasopharyngeal carcinoma (NPC). Methods: A total of 327 nonmetastatic NPC patients [training cohort (n = 230) and validation cohort (n = 97)] were enrolled. The clinical and MRI data were collected. The least absolute shrinkage selection operator (LASSO) and recursive feature elimination (RFE) were used to select radiomic features. Five models [Model 1: clinical data, Model 2: overall stage, Model 3: radiomics, Model 4: radiomics + overall stage, Model 5: radiomics + overall stage + Epstein-Barr virus (EBV) DNA] were constructed. The prognostic performances of these models were evaluated by Harrell's concordance index (C-index). The Kaplan-Meier method was applied for the survival analysis. Results: Model 5 incorporating radiomics, overall stage, and EBV DNA yielded the highest C-indices for predicting PFS in comparison with Model 1, Model 2, Model 3, and Model 4 (training cohorts: 0.805 vs. 0.766 vs. 0.749 vs. 0.641 vs. 0.563, validation cohorts: 0.874 vs. 0.839 vs. 836 vs. 0.689 vs. 0.456). The survival curve showed that the high-risk group yielded a lower PFS than the low-risk group. Conclusions: The model incorporating radiomics, overall stage, and EBV DNA showed better performance for predicting PFS in nonmetastatic NPC patients.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Impact of Plasma Epstein-Barr Virus-DNA and Tumor Volume on Prognosis of Locally Advanced Nasopharyngeal Carcinoma [J].
Chen, Meng ;
JingWu, Li Yin ;
Gu, Jia-Jia ;
Jiang, Xue-Song ;
Wang, De-Jun ;
Zong, Dan ;
Guo, Chang ;
Zhu, Huan-Feng ;
Wu, Jian-Feng ;
He, Xia ;
Guo, Wen-Jie .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[2]   Nasopharyngeal carcinoma [J].
Chen, Yu-Pei ;
Chan, Anthony T. C. ;
Quynh-Thu Le ;
Blanchard, Pierre ;
Sun, Ying ;
Ma, Jun .
LANCET, 2019, 394 (10192) :64-80
[3]   Progression-free survival as primary end point in advanced non-small-cell lung cancer: does the size matter? [J].
Di Maio, M. ;
Bria, E. ;
Rossi, A. ;
Perrone, F. .
ANNALS OF ONCOLOGY, 2008, 19 (02) :402-403
[4]   Machine Learning Methods for Optimal Radiomics-Based Differentiation Between Recurrence and Inflammation: Application to Nasopharyngeal Carcinoma Post-therapy PET/CT Images [J].
Du, Dongyang ;
Feng, Hui ;
Lv, Wenbing ;
Ashrafinia, Saeed ;
Yuan, Qingyu ;
Wang, Quanshi ;
Yang, Wei ;
Feng, Qianjin ;
Chen, Wufan ;
Rahmim, Arman ;
Lu, Lijun .
MOLECULAR IMAGING AND BIOLOGY, 2020, 22 (03) :730-738
[5]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[6]   Depicting distant metastatic risk by refined subgroups derived from the 8th edition nasopharyngeal carcinoma TNM [J].
Guo, Qiaojuan ;
Lu, Tianzhu ;
Huang, Shao Hui ;
O'Sullivan, Brian ;
Zong, Jingfeng ;
Xian, Youping ;
Xu, Wei ;
Chen, Chuanben ;
Qiu, Sufang ;
Xu, Luying ;
Zheng, Wei ;
Chen, Yunbin ;
Lin, Shaojun ;
Pan, Jianji .
ORAL ONCOLOGY, 2019, 91 :113-120
[7]   Proposed modifications and incorporation of plasma Epstein-Barr virus DNA improve the TNM staging system for Epstein-Barr virus-related nasopharyngeal carcinoma [J].
Guo, Rui ;
Tang, Ling-Long ;
Mao, Yan-Ping ;
Du, Xiao-Jing ;
Chen, Lei ;
Zhang, Zi-Chen ;
Liu, Li-Zhi ;
Tian, Li ;
Luo, Xiao-Tong ;
Xie, Yu-Bin ;
Ren, Jian ;
Sun, Ying ;
Ma, Jun .
CANCER, 2019, 125 (01) :79-89
[8]   Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer [J].
Huang, Yanqi ;
Liu, Zaiyi ;
He, Lan ;
Chen, Xin ;
Pan, Dan ;
Ma, Zelan ;
Liang, Cuishan ;
Tian, Jie ;
Liang, Changhong .
RADIOLOGY, 2016, 281 (03) :947-957
[9]   Is pretreatment Epstein-Barr virus DNA still associated with 6-year survival outcomes in locoregionally advanced nasopharyngeal carcinoma? [J].
Jin, Ya-Nan ;
Yao, Ji-Jin ;
Zhang, Fan ;
Wang, Si-Yang ;
Zhang, Wang-Jian ;
Zhou, Guan-Qun ;
Qi, Zhen-Yu ;
Sun, Ying .
JOURNAL OF CANCER, 2017, 8 (06) :976-982
[10]   Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer [J].
Larue, Ruben T. H. M. ;
Klaassen, Remy ;
Jochems, Arthur ;
Leijenaar, Ralph T. H. ;
Hulshof, Maarten C. C. M. ;
Henegouwen, Mark I. van Berge ;
Schreurs, Wendy M. J. ;
Sosef, Meindert N. ;
van Elmpt, Wouter ;
van Laarhoven, Hanneke W. M. ;
Lambin, Philippe .
ACTA ONCOLOGICA, 2018, 57 (11) :1475-1481