An Interval NLPV Parity Equations Approach for Fault Detection and Isolation of a Wind Farm

被引:51
作者
Blesa, Joaquim [1 ,2 ]
Jimenez, Pedro [1 ]
Rotondo, Damiano [1 ]
Nejjari, Fatiha [1 ]
Puig, Vicenc [1 ,2 ]
机构
[1] Univ Politecn Cataluna, Res Ctr Supervis Safety & Automat Control CS2AC, Terrassa 08222, Spain
[2] CSIC UPC, Inst Robot & Informat Ind, Barcelona 08028, Spain
关键词
Fault diagnosis; interval nonlinear parameter-varying (NLPV) parity equations; wind farm; TURBINES; DIAGNOSIS; IDENTIFICATION; OBSERVERS; SYSTEMS; DESIGN;
D O I
10.1109/TIE.2014.2386293
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of fault diagnosis of a wind farm is addressed using interval nonlinear parameter-varying (NLPV) parity equations. Fault detection is based on the use of parity equations assuming unknown but bounded description of the noise and modeling errors. The fault detection test is based on checking the consistency between the measurements and the model, by finding if the formers are inside the interval prediction bounds. The fault isolation algorithm is based on analyzing the observed fault signatures online and matching them with the theoretical ones obtained using structural analysis. Finally, the proposed approach is tested using the wind farm benchmark proposed in the context of the wind farm fault-detection-and-isolation/fault-tolerant-control competition.
引用
收藏
页码:3794 / 3805
页数:12
相关论文
共 41 条
[31]   ROBUST-CONTROL DESIGN VIA EIGENSTRUCTURE ASSIGNMENT, GENETIC ALGORITHMS AND GRADIENT-BASED OPTIMIZATION [J].
PATTON, RJ ;
LIU, GP .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1994, 141 (03) :202-208
[32]   Wind energy delivery issues [transmission planning and competitive electricity market operation] [J].
Piwko, R. ;
Osborn, D. ;
Gramlich, R. ;
Jordan, G. ;
Hawkins, D. ;
Porter, K. .
IEEE Power and Energy Magazine, 2005, 3 (06) :47-56
[33]   Identification of non-linear parametrically varying models using separable least squares [J].
Previdi, F ;
Lovera, M .
INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (16) :1382-1392
[34]   Passive robust fault detection of dynamic processes using interval models [J].
Puig, V. ;
Quevedo, J. ;
Escobet, T. ;
Nejjari, F. ;
de las Heras, S. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2008, 16 (05) :1083-1089
[35]   Passive robust fault detection using interval observers: Application to the DAMADICS benchmark problem [J].
Puig, V ;
Stancu, A ;
Escobet, T ;
Nejjari, F ;
Quevedo, J ;
Patton, RJ .
CONTROL ENGINEERING PRACTICE, 2006, 14 (06) :621-633
[36]  
Rong Q., 2003, P 6 ECC CAMBR UK
[37]   Fault detection and isolation of the three-tank system using the modal interval analysis [J].
Sainz, MA ;
Armengol, J ;
Vehí, J .
JOURNAL OF PROCESS CONTROL, 2002, 12 (02) :325-338
[38]   Automated Design of an FDI System for theWind Turbine Benchmark [J].
Svard, Carl ;
Nyberg, Mattias .
JOURNAL OF CONTROL SCIENCE AND ENGINEERING, 2012, 2012
[39]   FUZZY IDENTIFICATION OF SYSTEMS AND ITS APPLICATIONS TO MODELING AND CONTROL [J].
TAKAGI, T ;
SUGENO, M .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (01) :116-132
[40]   Cost-Effective Condition Monitoring for Wind Turbines [J].
Yang, Wenxian ;
Tavner, Peter J. ;
Crabtree, Christopher J. ;
Wilkinson, Michael .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (01) :263-271