Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids

被引:181
作者
Rawicz, W. [1 ,2 ]
Smith, B. A. [1 ,2 ]
McIntosh, T. J. [3 ,4 ]
Simon, S. A.
Evans, E. [1 ,2 ,5 ]
机构
[1] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada
[2] Univ British Columbia, Dept Pathol, Vancouver, BC V5Z 1M9, Canada
[3] Duke Univ, Med Ctr, Dept Cell Biol, Durham, NC 27710 USA
[4] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
[5] Boston Univ, Boston, MA 02215 USA
关键词
D O I
10.1529/biophysj.107.121731
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Bilayers composed of phosphatidylcholine (PC), sphingomyelin (SM), and cholesterol (CHOL) are commonly used as systems to model the raft-lipid domain structure believed to compartmentalize particular cell membrane proteins. In this work, micropipette aspiration of giant unilamellar vesicles was used to test the elasticities, water permeabilities, and rupture tensions of single-component PC, binary 1:1 PC/CHOL, and 1:1 SM/CHOL, and ternary 1:1:1 PC/SM/CHOL bilayers, one-set of measurements with dioleoyl PC (DOPC; C18:1/C18:1 PC) and the other with stearoyloleoyl PC (SOPC; C18:0/C18:1 PC). Defining the elastic moduli (KA), the initial slopes of the increase in tension (sigma) versus stretch in lipid surface area (alpha(e)) were determined for all systems at low (15 degrees C) and high (32-33 degrees C) temperatures. The moduli for the single-component PC and binary phospholipid/CHOL bilayers followed a descending hierarchy of stretch resistance with SM/CHOL > SOPC/CHOL > DOPC/ CHOL > PC. Although much more resistant to stretch than the single-component PC bilayers, the elastic response of vesicle bilayers made from the ternary phospholipid/CHOL mixtures showed an abrupt softening (discontinuity in slope), when immediately subjected to a steady ramp of tension at the low temperature (15 degrees C). However, the discontinuities in elastic stretch resistance at low temperature vanished when the bilayers were held at similar to 1 mN/m prestress for long times before a tension ramp and when tested at the higher temperature 32-33 degrees C. The elastic moduli of single-component PC and DOPC/CHOL bilayers changed very little with temperature, whereas the moduli of the binary SOPC/CHOL and SM/CHOL bilayers diminished markedly with increase in temperature, as did the ternary SOPC/SM/CHOL system. For all systems, increasing temperature increased the water permeability but decreased rupture tension. Concomitantly, the measurements of permeability exhibited a prominent correlation with the rupture tension across all the systems. Together, these micromechanical tests of binary and ternary phospholipid/CHOL bilayers; demonstrate that PC hydrocarbon chain unsaturation and temperature are major determinants of the mechanical and permeation properties of membranes composed of raft microdomain-forming lipids.
引用
收藏
页码:4725 / 4736
页数:12
相关论文
共 62 条
[1]   On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: Physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes [J].
Ahmed, SN ;
Brown, DA ;
London, E .
BIOCHEMISTRY, 1997, 36 (36) :10944-10953
[2]   Association of GAP-43 with detergent-resistant membranes requires two palmitoylated cysteine residues [J].
Arni, S ;
Keilbaugh, SA ;
Ostermeyer, AG ;
Brown, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (43) :28478-28485
[3]   Membrane elasticity in giant vesicles with fluid phase coexistence [J].
Baumgart, T ;
Das, S ;
Webb, WW ;
Jenkins, JT .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :1067-1080
[4]   Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension [J].
Baumgart, T ;
Hess, ST ;
Webb, WW .
NATURE, 2003, 425 (6960) :821-824
[5]   Acyl and alkyl chain length of GPI-anchors is critical for raft association in vitro [J].
Benting, J ;
Rietveld, A ;
Ansorge, I ;
Simons, K .
FEBS LETTERS, 1999, 462 (1-2) :47-50
[6]   EFFECT OF CHOLESTEROL INCORPORATION ON TEMPERATURE-DEPENDENCE OF WATER PERMEATION THROUGH LIPOSOMAL MEMBRANES PREPARED FROM PHOSPHATIDYLCHOLINES [J].
BLOK, MC ;
VANDEENEN, LLM ;
DEGIER, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1977, 464 (03) :509-518
[7]   PHYSICAL-PROPERTIES OF THE FLUID LIPID-BILAYER COMPONENT OF CELL-MEMBRANES - A PERSPECTIVE [J].
BLOOM, M ;
EVANS, E ;
MOURITSEN, OG .
QUARTERLY REVIEWS OF BIOPHYSICS, 1991, 24 (03) :293-397
[8]   Structure and function of sphingolipid- and cholesterol-rich membrane rafts [J].
Brown, DA ;
London, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) :17221-17224
[9]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[10]   Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol:: Support for an inhomogeneous lipid distribution at high temperatures [J].
Bunge, Andreas ;
Mueller, Peter ;
Stoeckl, Martin ;
Herrmann, Andreas ;
Huster, Daniel .
BIOPHYSICAL JOURNAL, 2008, 94 (07) :2680-2690