Current development in quantitative phase-field modeling of solidification

被引:19
作者
Dong, Xiang-lei [1 ]
Xing, Hui [2 ,3 ]
Weng, Kang-rong [1 ]
Zhao, Hong-liang [1 ]
机构
[1] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 150001, Henan, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Key Lab Condensed Matter Struct & Propert, Xian 710129, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase-field modeling; Liquid-solid interface; Solidification; Dendritic growth; Microstructural formation; FREE DENDRITIC GROWTH; DIRECTIONAL SOLIDIFICATION; BINARY ALLOY; EPITAXIAL-GROWTH; CELLULAR-AUTOMATON; FULLY IMPLICIT; GRAIN-GROWTH; SIMULATION; NUCLEATION; COMPUTATION;
D O I
10.1016/S1006-706X(17)30129-2
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The quantitative phase-field simulations were reviewed on the processes of solidification of pure metals and alloys. The quantitative phase-field equations were treated in a diffuse thin-interface limit, which enabled the quantitative links between interface dynamics and model parameters in the quasi-equilibrium simulations. As a result, the quantitative modeling is more effective in dealing with microstructural pattern formation in the large scale simulations without any spurious kinetic effects. The development of the quantitative phase-field models in modeling the formation of microstructures such as dendritic structures, eutectic lamellas, seaweed morphologies, and grain boundaries in different solidified conditions was also reviewed with the purpose of guiding to find the new prospect of applications in the quantitative phase-field simulations.
引用
收藏
页码:865 / 878
页数:14
相关论文
共 135 条
[1]   Solute trapping and solute drag in a phase-field model of rapid solidification [J].
Ahmad, NA ;
Wheeler, AA ;
Boettinger, WJ ;
McFadden, GB .
PHYSICAL REVIEW E, 1998, 58 (03) :3436-3450
[2]   Orientation selection in solidification patterning [J].
Amoorezaei, Morteza ;
Gurevich, Sebastian ;
Provatas, Nikolas .
ACTA MATERIALIA, 2012, 60 (02) :657-663
[3]   Spacing characterization in Al-Cu alloys directionally solidified under transient growth conditions [J].
Amoorezaei, Morteza ;
Gurevich, Sebastian ;
Provatas, Nikolas .
ACTA MATERIALIA, 2010, 58 (18) :6115-6124
[4]   Surface rippling during solidification of binary polycrystalline alloy: Insights from 3-D phase-field simulations [J].
Ankit, Kumar ;
Xing, Hui ;
Selzer, Michael ;
Nestler, Britta ;
Glicksman, Martin E. .
JOURNAL OF CRYSTAL GROWTH, 2017, 457 :52-59
[5]   Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification [J].
Badillo, Arnoldo ;
Beckermann, Christoph .
ACTA MATERIALIA, 2006, 54 (08) :2015-2026
[6]   Modeling melt convection in phase-field simulations of solidification [J].
Beckermann, C ;
Diepers, HJ ;
Steinbach, I ;
Karma, A ;
Tong, X .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :468-496
[7]   In Situ Synchrotron X-ray Characterization of Microstructure Formation in Solidification Processing of Al-based Metallic Alloys [J].
Billia, Bernard ;
Nguyen-Thi, Henri ;
Mangelinck-Noel, Nathalie ;
Bergeon, Nathalie ;
Jung, Hyejin ;
Reinhart, Guillaume ;
Bogno, Aziz ;
Buffet, Adeline ;
Hartwig, Jurgen ;
Baruchel, Jose ;
Schenk, Thomas .
ISIJ INTERNATIONAL, 2010, 50 (12) :1929-1935
[8]  
Boercker D. B., 1997, 5 RUSS AM COMP MATH
[9]   Phase-field simulation of solidification [J].
Boettinger, WJ ;
Warren, JA ;
Beckermann, C ;
Karma, A .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :163-194
[10]   4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification [J].
Cai, B. ;
Wang, J. ;
Kao, A. ;
Pericleous, K. ;
Phillion, A. B. ;
Atwood, R. C. ;
Lee, P. D. .
ACTA MATERIALIA, 2016, 117 :160-169