Forecasting tropospheric ozone concentrations with adaptive neural networks

被引:0
作者
Taormina, R. [2 ]
Mesin, L. [1 ]
Orione, F. [1 ]
Pasero, E. [1 ]
机构
[1] Politecn Torino, Dept Elect, Turin, Italy
[2] Hong Kong Polytech Univ, Dept Civil & Struct Engn, Hong Kong, Hong Kong, Peoples R China
来源
2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2011年
关键词
PREDICTION; POLLUTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The issue of air quality is now a major concern for many citizens worldwide. Local air quality forecasting can be made on the basis of meteorological variables and air pollutants concentration time series. We propose an adaptive filter technique based on an artificial neural network (ANN) to make 24-hours maximal daily ozone-concentrations forecasts.
引用
收藏
页码:1857 / 1863
页数:7
相关论文
共 29 条
[1]  
[Anonymous], 2006, AIR QUAL GUID GLOG U
[2]  
Bard D., 2010, Air Pollution, P319
[3]  
Boznar M. Z., 2004, 9 INT C HARM ATM DIS
[4]  
Brook RD, 2007, NEW ENGL J MED, V356, P2104
[5]  
Brown LesterR., 2002, EARTH POLICY READER
[6]  
Cecchetti M., IEMSS 2004 U OSN GER
[7]   Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning [J].
Corani, G .
ECOLOGICAL MODELLING, 2005, 185 (2-4) :513-529
[8]  
Environmental Research Group King's College London, 2010, Z AIR QUAL PROJ STRA
[9]  
Environmental Research Group King's College London, 2010, AIR QUAL PROJ
[10]  
Foxall R., 2001, ICASSP IEEE INT C AC