Decomposition of stationary α-stable random fields

被引:35
作者
Rosinski, J [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
stable random fields; stationarity; stochastic integral representation; nonsingular flow; cocycle; mixed moving average; harmonizable random field;
D O I
10.1214/aop/1019160508
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work is concerned with the structural analysis of stationary alpha -stable random fields. Three distinct classes of such random fields are characterized and it is shown that every stationary alpha -stable random field can be uniquely decomposed into the sum of three independent components belonging to these classes. Various examples of stationary alpha -stable random fields are discussed in this context.
引用
收藏
页码:1797 / 1813
页数:17
相关论文
共 10 条
[1]  
[Anonymous], 1994, J THEOR PROBAB, DOI DOI 10.1007/BF02213572
[2]  
GROSS A, 1994, STUD MATH, V114, P275
[3]  
Janicki A, 1994, SIMULATION CHAOTIC B
[4]  
Kallenberg O., 1975, RANDOM MEASURES
[5]   REPRESENTATION THEOREMS FOR FLOWS AND SEMIFLOWS .2. [J].
KRENGEL, U .
MATHEMATISCHE ANNALEN, 1969, 182 (01) :1-&
[6]   ON THE STRUCTURE OF STATIONARY STABLE PROCESSES [J].
ROSINSKI, J .
ANNALS OF PROBABILITY, 1995, 23 (03) :1163-1187
[7]  
Samorodnitsky G., 1994, NONGAUSSIAN STABLE P
[8]   STABLE MIXED MOVING AVERAGES [J].
SURGAILIS, D ;
ROSINSKI, J ;
MANDREKAR, V ;
CAMBANIS, S .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (04) :543-558
[9]  
VARADARAJAN VS, 1970, GEOMETRY QUANTUM THE, V2
[10]  
ZIEMMER RJ, 1984, ERGODIC THEORY SEMIS