Engineering Phase Transformation of MoS2/RGO by N-doping as an Excellent Microwave Absorber

被引:78
作者
Guo, Huiqiao [1 ,2 ]
Wang, Lei [1 ,2 ]
You, Wenbin [1 ,2 ]
Yang, Liting [1 ,2 ]
Li, Xiao [1 ,2 ]
Chen, Guanyu [1 ,2 ]
Wu, Zhengchen [1 ,2 ]
Qian, Xiang [1 ,2 ]
Wang, Min [1 ,2 ]
Che, Renchao [1 ,2 ]
机构
[1] Fudan Univ, Lab Adv Mat, Dept Mat Sci, Shanghai 200438, Peoples R China
[2] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChem, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional materials; molybdenum disulfide; reduced graphene oxide; microwave absorption; multiple polarization; GRAPHENE OXIDE COMPOSITE; HIGH-EFFICIENCY; FACILE FABRICATION; LITHIUM; ABSORPTION; ANODE; PERFORMANCE; HETEROSTRUCTURES; LIGHTWEIGHT; NANOSHEETS;
D O I
10.1021/acsami.0c01998
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As a hot two-dimensional (2D) material, molybdenum disulfide has been attracting extensive attention for electromagnetic wave response applications because of its unique structure. However, the electronic conductivity of nanostructured MoS2 needs to be optimized urgently. Here, nitrogen-doped 1T@2H-MoS2/reduced graphene oxide (RGO) composites are effectively constructed by hydrothermal reaction and consecutive calcination under an NH3 atmosphere. The prepared composites possess great microwave absorption (MA) performance with an expected absorption bandwidth (4.00 GHz) at the Ku band and a maximum reflection loss value (-67.77 dB), which is much better than the performance of conventional 2H-MoS2 or 2H-MoS2/RGO. The prominent absorption property is ascribed to the (i) unique self-assemble morphology of rose-like MoS2 supported on 2D RGO; (ii) controllable crystalline phase switch between 2H and 1T; and (iii) brilliant energy attenuation caused by the intense multipolarization. Furthermore, the dominant MA mechanism is described as the local polarization motivated by the interaction between RGO and MoS2. Thus, our novel structure design provides a necessary reference to achieve optimized absorption performance based on 2D materials.
引用
收藏
页码:16831 / 16840
页数:10
相关论文
共 65 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/nnano.2015.40, 10.1038/NNANO.2015.40]
[2]   Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin [J].
Adhikari, Sangeeta ;
Mandal, Sandip ;
Kim, Do-Heyoung .
CHEMICAL ENGINEERING JOURNAL, 2019, 373 :31-43
[3]   Nonvolatile Memory Cells Based on MoS2/Graphene Heterostructures [J].
Bertolazzi, Simone ;
Krasnozhon, Daria ;
Kis, Andras .
ACS NANO, 2013, 7 (04) :3246-3252
[4]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[5]   Targeted Synthesis of 2H-and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution [J].
Chang, Kun ;
Hai, Xiao ;
Pang, Hong ;
Zhang, Huabin ;
Shi, Li ;
Liu, Guigao ;
Liu, Huimin ;
Zhao, Guixia ;
Li, Mu ;
Ye, Jinhua .
ADVANCED MATERIALS, 2016, 28 (45) :10033-10041
[6]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[7]   MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries [J].
Chen, Chi ;
Xie, Xiuqiang ;
Anasori, Babak ;
Sarycheva, Asya ;
Makaryan, Taron ;
Zhao, Mengqiang ;
Urbankowski, Patrick ;
Miao, Ling ;
Jiang, Jianjun ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) :1846-1850
[8]   Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties [J].
Cheng, Yan ;
Zhao, Yue ;
Zhao, Huanqin ;
Lv, Hualiang ;
Qi, Xiaodong ;
Cao, Jieming ;
Ji, Guangbin ;
Du, Youwei .
CHEMICAL ENGINEERING JOURNAL, 2019, 372 :390-398
[9]   Two-dimensional MoS2 modified using CoFe2O4 nanoparticles with enhanced microwave response in the X and Ku band [J].
Cui, Xiaoqing ;
Liu, Wei ;
Gu, Weihua ;
Liang, Xiaohui ;
Ji, Guangbin .
INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (02) :590-597
[10]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770