Unsupervised anomaly intrusion detection using ant colony clustering model

被引:0
|
作者
Tsang, W [1 ]
Kwong, S [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
来源
Soft Computing as Transdisciplinary Science and Technology | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an efficient and biologically inspired clustering model for anomaly intrusion detection. The proposed model called Ant Colony Clustering Model (ACCM) that improves existing ant-based clustering model in searching for optimal clustering heuristically. Experimental results on KDD-Cup99 benchmark data show that ACCM is effective to detect known and unseen attacks with high detection rate and low false positive rate.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [42] A new data normalization method for unsupervised anomaly intrusion detection
    Cai, Long-zheng
    Chen, Jian
    Ke, Yun
    Chen, Tao
    Li, Zhi-gang
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE C-COMPUTERS & ELECTRONICS, 2010, 11 (10): : 778 - 784
  • [43] A new data normalization method for unsupervised anomaly intrusion detection
    Long-zheng Cai
    Jian Chen
    Yun Ke
    Tao Chen
    Zhi-gang Li
    Journal of Zhejiang University SCIENCE C, 2010, 11 : 778 - 784
  • [44] Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
    Bahjat, Hala
    Mohammed, Suhaila N.
    Ahmed, Wafaa
    Hamad, Sumaya
    Mohammed, Shayma
    2020 13TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2020), 2020, : 257 - 262
  • [45] Unsupervised intrusion detection for rail transit based on anomaly segmentation
    Yixin Shen
    Deqiang He
    Qi Liu
    Zhenzhen Jin
    Xianwang Li
    Chonghui Ren
    Signal, Image and Video Processing, 2024, 18 : 1079 - 1087
  • [46] An unsupervised anomaly intrusion detection algorithm based on swarm intelligence
    Feng, Y
    Wu, ZF
    Wu, KG
    Xiong, ZY
    Zhou, Y
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3965 - 3969
  • [47] Anomaly intrusion detection based on clustering a data stream
    Oh, Sang-Hyun
    Kang, Jin-Suk
    Bytin, Yung-Cheol
    Jeong, Taikyeong T.
    Lee, Won-Suk
    INFORMATION SECURITY, PROCEEDINGS, 2006, 4176 : 415 - 426
  • [48] A new data normalization method for unsupervised anomaly intrusion detection
    Longzheng CAIJian CHENYun KETao CHENZhigang LI Engineering and Commerce CollegeSouthCentral University for NationalitiesWuhan China Guangdong Institute of Science and TechnologyZhuhai China
    Journal of Zhejiang University-Science C(Computers & Electronics), 2010, 11 (10) : 778 - 784
  • [49] Unsupervised intrusion detection for rail transit based on anomaly segmentation
    Shen, Yixin
    He, Deqiang
    Liu, Qi
    Jin, Zhenzhen
    Li, Xianwang
    Ren, Chonghui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1079 - 1087
  • [50] ANIDS: Anomaly Network Intrusion Detection System Using Hierarchical Clustering Technique
    Sangve, Sunil M.
    Thool, Ravindra C.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DATA ENGINEERING AND COMMUNICATION TECHNOLOGY, ICDECT 2016, VOL 1, 2017, 468 : 121 - 129