Unsupervised anomaly intrusion detection using ant colony clustering model

被引:0
|
作者
Tsang, W [1 ]
Kwong, S [1 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
来源
Soft Computing as Transdisciplinary Science and Technology | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an efficient and biologically inspired clustering model for anomaly intrusion detection. The proposed model called Ant Colony Clustering Model (ACCM) that improves existing ant-based clustering model in searching for optimal clustering heuristically. Experimental results on KDD-Cup99 benchmark data show that ACCM is effective to detect known and unseen attacks with high detection rate and low false positive rate.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [21] Detection and classification of anomaly intrusion using hierarchy clustering and SVM
    Tang, Chenghua
    Xiang, Yang
    Wang, Yu
    Qian, Junyan
    Qiang, Baohua
    SECURITY AND COMMUNICATION NETWORKS, 2016, 9 (16) : 3401 - 3411
  • [22] Unsupervised anomaly detection using HDG-Clustering algorithm
    Tsai, Cheng-Fa
    Yen, Chia-Chen
    NEURAL INFORMATION PROCESSING, PART II, 2008, 4985 : 356 - 365
  • [23] Email Community Detection Using Artificial Ant Colony Clustering
    Liu, Yan
    Wang, QingXian
    Wang, Qiang
    Yao, Qing
    Liu, Yao
    ADVANCES IN WEB AND NETWORK TECHNOLOGIES, AND INFORMATION MANAGEMENT, PROCEEDINGS, 2007, 4537 : 287 - 298
  • [24] Hybrid Intrusion Detection System using an Unsupervised method for Anomaly-based Detection
    Bhadauria, Saumya
    Mohanty, Tamanna
    2021 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (IEEE ANTS), 2021,
  • [25] Unsupervised anomaly detection model combining total attributes clustering and feature attributes clustering
    Liu W.-G.
    Zhang Z.-L.
    Tiedao Xuebao/Journal of the China Railway Society, 2010, 32 (05): : 59 - 64
  • [26] Anomaly Based Network Intrusion Detection with Unsupervised Outlier Detection
    Zhang, Jiong
    Zulkernine, Mohammad
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 2388 - 2393
  • [27] A Novel Unsupervised Anomaly Detection Approach for Intrusion Detection System
    Chen, Weiwei
    Kong, Fangang
    Mei, Feng
    Yuan, Guiqin
    Li, Bo
    2017 IEEE 3RD INTERNATIONAL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY, IEEE 3RD INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING, (HPSC) AND 2ND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2017, : 69 - 73
  • [28] Quantitative Comparison of Unsupervised Anomaly Detection Algorithms for Intrusion Detection
    Falcao, Filipe
    Zoppi, Tommaso
    Viera Silva, Caio Barbosa
    Santos, Anderson
    Fonseca, Baldoino
    Ceccarelli, Andrea
    Bondavalli, Andrea
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 318 - 327
  • [29] An Unsupervised Network Intrusion Detection Based on Anomaly Analysis
    Zhong, Jiang
    Deng, Xiongbing
    Wen, Luosheng
    Feng, Yong
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 367 - +
  • [30] Anomaly-based intrusion detection using fuzzy rough clustering
    Chimphlee, Witcha
    Abdullah, Abdul Hanan
    Sap, Mohd Noor Md
    Srinoy, Surat
    Chimphlee, Siriporn
    2006 International Conference on Hybrid Information Technology, Vol 1, Proceedings, 2006, : 329 - 334