A conjecture of Borodin and a coloring of Grunbaum

被引:3
作者
Rautenbach, Dieter [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
关键词
coloring; acyclic coloring; degenerate; planar graph;
D O I
10.1002/jgt.20299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1976, Borodin conjectured that every planar graph has a 5-coloring such that the union of every k color classes with 1 <= k <= 4 induces a (k-1)-degenerate graph. We prove the existence of such a coloring using 18 colors. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 14 条
[11]  
KOSTOCHKA AV, 1976, METODY DISKRET ANAL, V28, P40
[12]   EVERY PLANAR GRAPH HAS AN ACYCLIC 8-COLORING [J].
MITCHEM, J .
DUKE MATHEMATICAL JOURNAL, 1974, 41 (157) :177-181
[13]   On the acyclic choosability of graphs [J].
Montassier, M ;
Ochem, P ;
Raspaud, A .
JOURNAL OF GRAPH THEORY, 2006, 51 (04) :281-300
[14]  
MONTASSIER M, 2006, ALGORITHMS COMBINATO, V26, P473