A conjecture of Borodin and a coloring of Grunbaum

被引:3
作者
Rautenbach, Dieter [1 ]
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
关键词
coloring; acyclic coloring; degenerate; planar graph;
D O I
10.1002/jgt.20299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1976, Borodin conjectured that every planar graph has a 5-coloring such that the union of every k color classes with 1 <= k <= 4 induces a (k-1)-degenerate graph. We prove the existence of such a coloring using 18 colors. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 14 条
[1]   EVERY PLANAR GRAPH HAS AN ACYCLIC-7-COLORING [J].
ALBERTSON, MO ;
BERMAN, DM .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 28 (1-2) :169-174
[2]  
Albertson MO, 2004, ELECTRON J COMB, V11
[3]   ACYCLIC COLORING OF GRAPHS [J].
ALON, N ;
MCDIARMID, C ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) :277-288
[4]  
Borodin O.V., 1976, SOV MATH DOKL, P1499
[5]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
BORODIN, OV .
DISCRETE MATHEMATICS, 1979, 25 (03) :211-236
[6]   Acyclic list 7-coloring of planar graphs [J].
Borodin, OV ;
Flaass, DGF ;
Kostochka, AV ;
Raspaud, A ;
Sopena, E .
JOURNAL OF GRAPH THEORY, 2002, 40 (02) :83-90
[7]   Star coloring of graphs [J].
Fertin, G ;
Raspaud, A ;
Reed, B .
JOURNAL OF GRAPH THEORY, 2004, 47 (03) :163-182
[8]  
Gonçalves D, 2005, LECT NOTES COMPUT SC, V3787, P239
[9]   ACYCLIC COLORINGS OF PLANAR GRAPHS [J].
GRUNBAUM, B .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (04) :390-408
[10]  
Jensen T. R., 1995, Graph Coloring Problems