Droplets containing large solid particle inside formation and breakup dynamics in a flow-focusing microfluidic device

被引:6
作者
Pan, Dawei [1 ]
Chen, Qiang [1 ]
Zeng, Yong [1 ]
Li, Bo [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Monodisperse S/W/O compound droplets; Flow-focusing device; Neck rupture behaviors; Scaling law; Driving mechanisms; DOUBLE EMULSION DROPLETS; OIL COMPOUND DROPLETS; T-JUNCTION; FABRICATION; MICROENCAPSULATION; MICROCAPSULES; MECHANISM;
D O I
10.1016/j.expthermflusci.2020.110103
中图分类号
O414.1 [热力学];
学科分类号
摘要
The breakup dynamics of compound droplets containing large particle inside (S/W/O) in a flow-focusing microfluidic device were systematically investigated, and four typical flow regimes, regarding multiple-encapsulation, slug, transition and cobble, are distinguished. At low flow rate of outer fluid, Q(c) < 140 mL/h, the neck breakup can be divided into squeezing stage (W-n/W-c >= 0.25), and rapid pinch-off stage (W-n/W-c <= 0.25) during the whole formation process. However, for Q(c) >= 140 mL/h, the neck rupture behavior appears various, in which only rapid pinch-off stage can be observed. Generally, the neck dimensionless width, W-n/W-c variation with remaining time usually obeys a power law function. Moreover, the liquid film thickness always obtains a critical value as the flow rate of outer fluid further increases. Specially, it suggests that the differences in the breakup dynamics are mainly caused by the existence of solid particles. Finally, the corresponding driving mechanisms were also discussed.
引用
收藏
页数:11
相关论文
共 38 条
[1]  
Abate AR, 2011, LAB CHIP, V11, P253, DOI [10.1039/c0lc00236d, 10.1039/c01c00236d]
[2]  
[Anonymous], MICROSYST TECHNOL
[3]   Polymeric filament thinning and breakup in microchannels [J].
Arratia, P. E. ;
Gollub, J. P. ;
Durian, D. J. .
PHYSICAL REVIEW E, 2008, 77 (03)
[4]   FABRICATION OF POLYVINYL-ALCOHOL COATED POLYSTYRENE SHELLS [J].
BURNHAM, AK ;
GRENS, JZ ;
LILLEY, EM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1987, 5 (06) :3417-3421
[5]   Scaling and instabilities in bubble pinch-off [J].
Burton, JC ;
Waldrep, R ;
Taborek, P .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[6]   Monodisperse Emulsion Drop Microenvironments for Bacterial Biofilm Growth [J].
Chang, Connie B. ;
Wilking, James N. ;
Kim, Shin-Hyun ;
Shum, Ho Cheung ;
Weitz, David A. .
SMALL, 2015, 11 (32) :3954-3961
[7]   Hydrodynamics of a droplet passing through a microfluidic T-junction [J].
Chen, Yongping ;
Deng, Zilong .
JOURNAL OF FLUID MECHANICS, 2017, 819 :401-434
[8]   Three-dimensional splitting microfluidics [J].
Chen, Yongping ;
Gao, Wei ;
Zhang, Chengbin ;
Zhao, Yuanjin .
LAB ON A CHIP, 2016, 16 (08) :1332-1339
[9]   Role of the channel geometry on the bubble pinch-off in flow-focusing devices [J].
Dollet, Benjamin ;
van Hoeve, Wim ;
Raven, Jan-Paul ;
Marmottant, Philippe ;
Versluis, Michel .
PHYSICAL REVIEW LETTERS, 2008, 100 (03)
[10]   Breakup Dynamics for High-Viscosity Droplet Formation in a Flow-Focusing Device: Symmetrical and Asymmetrical Ruptures [J].
Du, Wei ;
Fu, Taotao ;
Zhu, Chunying ;
Ma, Youguang ;
Li, Huai Z. .
AICHE JOURNAL, 2016, 62 (01) :325-337