Determination of trace elements in quartz glass by use of LINA-Spark-ICP-MS as a new method for bulk analysis of solid samples

被引:14
作者
Tibi, M [1 ]
Heumann, KG [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Inorgan Chem & Analyt Chem, D-55099 Mainz, Germany
关键词
D O I
10.1007/s002160100789
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The determination of trace elements in pure quartz glass samples has been performed by coupling an ICP quadrupole mass spectrometer with the LINA-Spark-Atomizer, an IR laser ablation system dedicated to direct bulk and surface analysis of solid samples. Linear calibration curves were obtained for nine elements (Na, Al, Ca, Ti, Cr, Mn, Zr, Ba, and Pb) in the ng g(-1) range with detection limits of less than 10 ng g(-1) for Ca, Cr, Mn, Zr, Ba, and Pb and in the range of 120-220 ng g(-1) for Na, Al, and Ti. The distance between the laser focal point and the sample surface has a significant influence on signal intensity and precision, both of which can be improved by a factor of approximately two by focusing the laser 15 mm behind the sample surface. Aerosol moistening reduced the standard deviation of the signal intensity by a factor of 2-4. Signal instability, which resulted from different ablation rates or variations in the transmission of the mass spectrometer, were compensated by use of the simultaneously measured SiAr+ ion as an internal standard. Under these conditions precision was usually better than 5% RSD. The results were compared with those obtained by use of a commercial LA-ICP-MS system. With this instrumentation linear calibration curves were achieved for three elements only (Al, Ti, and Pb), showing that LA-ICP-MS is less appropriate for bulk analysis in the ng g(-1) range.
引用
收藏
页码:521 / 526
页数:6
相关论文
共 28 条
[1]   Plasma shielding effect in laser ablation of metallic samples and its influence on LIES analysis [J].
Aguilera, JA ;
Aragon, C ;
Penalba, F .
APPLIED SURFACE SCIENCE, 1998, 127 :309-314
[2]   EXPANSION OF LASER-GENERATED PLUMES NEAR THE PLASMA IGNITION THRESHOLD [J].
BALAZS, L ;
GIJBELS, R ;
VERTES, A .
ANALYTICAL CHEMISTRY, 1991, 63 (04) :314-320
[3]   FRACTIONATION EFFECTS IN LASER-ABLATION INDUCTIVELY-COUPLED PLASMA-MASS SPECTROMETRY [J].
CROMWELL, EF ;
ARROWSMITH, P .
APPLIED SPECTROSCOPY, 1995, 49 (11) :1652-1660
[4]   INTERACTION OF LASER-RADIATION WITH SOLID MATERIALS AND ITS SIGNIFICANCE TO ANALYTICAL SPECTROMETRY - A REVIEW [J].
DARKE, SA ;
TYSON, JF .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 1993, 8 (02) :145-209
[5]   Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects [J].
Durrant, SF .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 1999, 14 (09) :1385-1403
[6]   Elemental fractionation of glass using laser ablation inductively coupled plasma mass spectrometry [J].
Figg, D ;
Kahr, MS .
APPLIED SPECTROSCOPY, 1997, 51 (08) :1185-1192
[7]   More investigations into elemental fractionation resulting from laser ablation inductively coupled plasma mass spectrometry on glass samples [J].
Figg, DJ ;
Cross, JB ;
Brink, C .
APPLIED SURFACE SCIENCE, 1998, 127 :287-291
[8]   Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier -: Plenary lecture [J].
Günther, D ;
Heinrich, CA .
JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 1999, 14 (09) :1363-1368
[9]   Laser ablation and arc/spark solid sample introduction into inductively coupled plasma mass spectrometers [J].
Günther, D ;
Jackson, SE ;
Longerich, HP .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 1999, 54 (3-4) :381-409
[10]   Recent trends and developments in laser ablation-ICP-mass spectrometry [J].
Günther, D ;
Horn, I ;
Hattendorf, B .
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, 2000, 368 (01) :4-14