The transient equations of viscous quantum hydrodynamics

被引:15
作者
Dreher, Michael [1 ]
机构
[1] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
关键词
quantum hydrodynamics; existence; uniqueness and persistence of solutions; boundary conditions of Zaremba type; nonlinear Schrodinger equations; inviscid limit;
D O I
10.1002/mma.918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the viscous model of quantum hydrodynamics in a bounded domain of space dimension 1, 2, or 3, and in the full one-dimensional space. This model is a mixed-order partial differential system with nonlocal and nonlinear terms for the particle density, current density, and electric potential. By a viscous regularization approach, we show existence and uniqueness of local in time solutions. We propose a reformulation as an equation of Schrodinger type, and we prove the inviscid limit. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:391 / 414
页数:24
相关论文
共 22 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
CHEN L, 2007, IN PRESS MATH MODELS
[3]  
Chihara H, 1996, COMMUN PART DIFF EQ, V21, P63
[4]   Necessary conditions for the well-posedness of Schrodinger type equations in Gevrey spaces [J].
Dreher, M .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (06) :485-503
[5]  
FICHERA G, 1965, LINEAR ELLIPTIC DIFF
[6]   THE QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTOR-DEVICES [J].
GARDNER, CL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (02) :409-427
[7]  
GINDIKIN S, 1992, SOVIET SERIES MATH I, V86
[8]   Exponential decay in time of solutions of the viscous quantum hydrodynamic equations [J].
Gualdani, MP ;
Jüngel, A ;
Toscani, G .
APPLIED MATHEMATICS LETTERS, 2003, 16 (08) :1273-1278
[9]  
J?ngel A., 2001, QUASI HYDRODYNAMIC S
[10]   A derivation of the isothermal quantum hydrodynamic equations using entropy minimization [J].
Jüngel, A ;
Matthes, D .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (11) :806-814