共 32 条
RETRACTED: Morpho-physiological and biochemical attributes of Chili (Capsicum annum L.) genotypes grown under varying salinity levels (Retracted article. See vol. 17, 2022)
被引:9
|作者:
Butt, Madiha
[1
]
Sattar, Abdul
[1
]
Abbas, Tahira
[1
]
Hussain, Rashid
[2
]
Ijaz, Muhammad
[1
]
Sher, Ahmad
[1
]
Shahzad, Umbreen
[1
]
Ullah, Sami
[3
]
Brestic, Marian
[4
,5
]
Zivcak, Marek
[4
]
Gasparovic, Kristina
[4
]
Aljuaid, Bandar S.
[6
]
El-Shehawi, Ahmed M.
[6
]
Zuan, Ali Tan Kee
[7
]
机构:
[1] Bahauddin Zakariya Univ, Coll Agr, Bahadur Subcampus Layyah, Layyah, Pakistan
[2] Islamia Univ Bahawalpur, Univ Coll Agr & Environm Sci, Dept Hort Sci, Bahawalpur, Pakistan
[3] MNS Agr Univ, Dept Hort, Multan, Pakistan
[4] Slovak Univ Agr, Dept Plant Physiol, Nitra, Slovakia
[5] Czech Univ Life Sci Prague, Fac Agrobiol Food & Nat Resources, Dept Bot & Plant Physiol, Prague, Czech Republic
[6] Taif Univ, Coll Sci, Dept Biotechnol, At Taif, Saudi Arabia
[7] Univ Putra Malaysia, Fac Agr, Dept Land Management, Serdang, Selangor, Malaysia
来源:
关键词:
SALT STRESS;
GLYCINE BETAINE;
GAS-EXCHANGE;
WATER-STRESS;
LIPID-PEROXIDATION;
ANTIOXIDANT ENZYME;
ENHANCES GROWTH;
PROLINE;
TOMATO;
RESPONSES;
D O I:
10.1371/journal.pone.0257893
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Climate change is causing soil salinization, resulting in huge crop losses throughout the world. Multiple physiological and biochemical pathways determine the ability of plants to tolerate salt stress. Chili (Capsicum annum L.) is a salt-susceptible crop; therefore, its growth and yield is negatively impacted by salinity. Irreversible damage at cell level and photo inhibition due to high production of reactive oxygen species (ROS) and less CO2 availability caused by water stress is directly linked with salinity. A pot experiment was conducted to determine the impact of five NaCl salinity levels, i.e., 0,1.5, 3.0, 5.0 and 7.0 dS m(-1) on growth, biochemical attributes and yield of two chili genotypes ('Plahi' and 'A-120'). Salinity stress significantly reduced fresh and dry weight, relative water contents, water use efficiency, leaf osmotic potential, glycine betaine (GB) contents, photosynthetic rate (A), transpiration rate (E), stomatal conductance (Ci), and chlorophyll contents of tested genotypes. Salinity stress significantly enhanced malondialdehyde (MDA) contents and activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). In addition, increasing salinity levels significantly reduced the tissue phosphorus and potassium concentrations, while enhanced the tissue sodium and chloride concentrations. Genotype 'Plahi' had better growth and biochemical attributes compared to 'A-120'. Therefore, 'Plahi' is recommended for saline areas to improve chili production.
引用
收藏
页数:12
相关论文