Optimality of entanglement witnesses constructed from arbitrary permutations

被引:7
作者
Qi, Xiaofei [1 ]
Hou, Jinchuan [2 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Entanglement witnesses; Optimality; Bipartite quantum systems; Permutations;
D O I
10.1007/s11128-015-1007-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optimality of a class of entanglement witnesses constructed from any permutation for any bipartite systems is investigated. A necessary and sufficient condition is presented for such entanglement witnesses to be optimal, and thus, a class of optimal entanglement witnesses constructed by permutations is obtained.
引用
收藏
页码:2499 / 2515
页数:17
相关论文
共 46 条
  • [21] Constructing Entanglement Witnesses for States in Infinite-Dimensional Bipartite Quantum Systems
    Jinchuan Hou
    Yu Guo
    International Journal of Theoretical Physics, 2011, 50 : 1245 - 1254
  • [22] An exponential reduction in training data sizes for machine learning derived entanglement witnesses
    Rosebush, Aiden R.
    Greenwood, Alexander C. B.
    Kirby, Brian T.
    Qian, Li
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [23] OPTIMAL CLASS-SPECIFIC WITNESSES FOR THREE-QUBIT ENTANGLEMENT FROM GREENBERGER-HORNE-ZEILINGER SYMMETRY
    Eltschka, Christopher
    Siewert, Jens
    QUANTUM INFORMATION & COMPUTATION, 2013, 13 (3-4) : 210 - 220
  • [24] Permutations from an arithmetic setting
    Reis, Lucas
    Ribas, Savio
    DISCRETE MATHEMATICS, 2020, 343 (08)
  • [25] Polygons Drawn from Permutations
    Bilotta, Stefano
    Rinaldi, Simone
    Socci, Samanta
    FUNDAMENTA INFORMATICAE, 2013, 125 (3-4) : 329 - 342
  • [26] Cryptographically strong permutations from the butterfly structure
    Kangquan Li
    Chunlei Li
    Tor Helleseth
    Longjiang Qu
    Designs, Codes and Cryptography, 2021, 89 : 737 - 761
  • [27] Cryptographically strong permutations from the butterfly structure
    Li, Kangquan
    Li, Chunlei
    Helleseth, Tor
    Qu, Longjiang
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (04) : 737 - 761
  • [28] New Bent Functions from Permutations and Linear Translators
    Mesnager, Sihem
    Ongan, Pinar
    Ozbudak, Ferruh
    CODES, CRYPTOLOGY AND INFORMATION SECURITY, C2SI 2017, 2017, 10194 : 282 - 297
  • [29] Restricted compositions and permutations: From old to new Gray codes
    Vajnovszki, V.
    Vernay, R.
    INFORMATION PROCESSING LETTERS, 2011, 111 (13) : 650 - 655
  • [30] POSITIVE MAPS CONSTRUCTED FROM PERMUTATION PAIRS
    Hou, Jinchuan
    Zhao, Haili
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (01) : 148 - 164