Blow-up for semilinear wave equation with boundary damping and source terms

被引:16
作者
Ha, Tae Gab [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
基金
新加坡国家研究基金会;
关键词
Blow-up of solution; Positive initial energy; Boundary value problem; POSITIVE INITIAL ENERGY; GLOBAL-SOLUTIONS; DECAY-RATES; NONEXISTENCE THEOREMS; ASYMPTOTIC STABILITY; EVOLUTION-EQUATIONS; EXISTENCE; DISSIPATION; INSTABILITY;
D O I
10.1016/j.jmaa.2012.01.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the semilinear wave equation with boundary damping and source terms. This work is devoted to prove a finite time blow-up result under suitable condition on the initial data and positive initial energy. Published by Elsevier Inc.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 22 条
[11]   Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy [J].
Levine, HA ;
Todorova, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (03) :793-805
[12]   On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation [J].
Ono, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (01) :321-342
[13]   Energy decay rates for solutions of the wave equation with boundary damping and source term [J].
Park, Jong Yeoul ;
Ha, Tae Gab ;
Kang, Yong Han .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (02) :235-265
[14]   Energy decay for nondissipative distributed systems with boundary damping and source term [J].
Park, Jong Yeoul ;
Ha, Tae Gab .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2416-2434
[15]   Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term [J].
Park, Jong Yeoul ;
Ha, Tae Gab .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
[16]   SADDLE POINTS AND INSTABILITY OF NONLINEAR HYPERBOLIC EQUATIONS [J].
PAYNE, LE ;
SATTINGER, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (3-4) :273-303
[17]   Global existence and non-existence theorems for nonlinear wave equations [J].
Pitts, DR ;
Rammaha, MA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1479-1509
[18]   Global nonexistence for abstract evolution equations with positive initial energy [J].
Pucci, P ;
Serrin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 150 (01) :203-214
[19]   Global existence and nonexistence for nonlinear wave equations with damping and source terms [J].
Rammaha, MA ;
Strei, TA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (09) :3621-3637
[20]   The influence of damping and source terms on solutions of nonlinear wave equations [J].
Rammaha, Mohammad A. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2007, 25 (1-2) :77-90