Existence and Stability of Contrast Structures in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems

被引:5
作者
Davydova, M. A. [1 ]
Nefedov, N. N. [1 ]
机构
[1] Lomonosov Moscow State Univ, Dept Math, Fac Phys, Moscow 119991, Russia
来源
NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016) | 2017年 / 10187卷
基金
俄罗斯基础研究基金会;
关键词
Reaction-diffusion-advection problems; Interior layer; Contrast structure; EQUATIONS;
D O I
10.1007/978-3-319-57099-0_29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider stationary solutions with boundary and internal transition layers (contrast structures) for a nonlinear singularly perturbed equation that is referred to in applications as the stationary reaction-diffusion-advection equation. We construct an asymptotic approximation of an arbitrary-order accuracy to such solutions and prove the existence theorem. We suggest an afficient algorithm for constructing an asymptotic approximation to the localization surface of the transition layer. To justify the constructed asymptotics, we use and develop, to this class of problems, an asymptotic method of differential inequalities, which also permits one to prove the Lyapunov stability of such stationary solutions. The results can be used to create the numerical method which uses the asymptotic analyses to create space non uniform meshes to describe internal layer behavior of the solution.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 7 条
[1]   Existence and Stability of Solutions with Boundary Layers in Multidimensional Singularly Perturbed Reaction-Diffusion-Advection Problems [J].
Davydova, M. A. .
MATHEMATICAL NOTES, 2015, 98 (5-6) :909-919
[2]   Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection [J].
Levashova, N. T. ;
Nefedov, N. N. ;
Yagremtsev, A. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (03) :273-283
[3]  
Lukyanenko D., 2016, Model. Anal. Inf. Sist., V23, P334
[4]   Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations [J].
Nefedov, N. N. ;
Davydova, M. A. .
DIFFERENTIAL EQUATIONS, 2013, 49 (06) :688-706
[5]  
Nefedov N, 2013, LECT NOTES COMPUT SC, V8236, P62, DOI 10.1007/978-3-642-41515-9_6
[6]  
Volkov V, 2013, LECT NOTES COMPUT SC, V8236, P524, DOI 10.1007/978-3-642-41515-9_60
[7]  
[Волков Владимир Тарасович Volkov Vladimir Tarasovich], 2010, [Математическое моделирование, Mathematical Models and Computer Simulations, Matematicheskoe modelirovanie], V22, P109