Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire

被引:109
作者
Abnisa, Faisal [1 ]
Daud, Wan Mohd Ashri Wan [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Chem Engn, Kuala Lumpur 50603, Malaysia
关键词
Co-pyrolysis; Biomass waste; Palm shell; Scrap tire; Biofuel; WASTE TYRE PYROLYSIS; BIO-OIL; CALORIFIC VALUE; LIQUID FUEL; HIGH-GRADE; BIOMASS; CHAR; POLYSTYRENE; MIXTURES; QUALITY;
D O I
10.1016/j.enconman.2015.04.030
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study optimized the use of biomass waste to generate fuel through co-pyrolysis. In this paper, the effects of stepwise co-pyrolysis temperature and different ratios between palm shells and scrap tires in feedstock were studied to observe any improvements in the quantity and quality of the liquid yield and its byproduct. The ratio of palm shells and scrap tires varied at 100:0, 75:25, 50:50, 25:75, and 0:100. The experiment was conducted in a fixed-bed reactor. The study was divided into two scenarios. The first scenario was performed at the optimum temperature of 500 degrees C with a reaction time of 60 min. In the second scenario, the temperature was set at 500 degrees C for 60 min before the temperature was increased to 800 degrees C with a high heating rate. After the temperature reached 800 degrees C, the condition was maintained for approximately 45 min. Results showed that an increase in the liquid and gas yields was achieved when the temperature increased after optimum conditions. Increased yield was also obtained when the proportion of scrap tire was increased in the feedstock. Several other important findings are discussed in this paper, including the phases of pyrolysis oil, features of the liquid product, and characteristics of the byproducts. All products from both scenarios were analyzed by various methods to understand their fuel characteristics. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:334 / 345
页数:12
相关论文
共 50 条
[1]   A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil [J].
Abnisa, Faisal ;
Daud, Wan Mohd Ashri Wan .
ENERGY CONVERSION AND MANAGEMENT, 2014, 87 :71-85
[2]   Pyrolysis of Mixtures of Palm Shell and Polystyrene: An Optional Method to Produce a High-Grade of Pyrolysis Oil [J].
Abnisa, Faisal ;
Daud, W. M. A. Wan ;
Sahu, J. N. .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (03) :1026-1033
[3]   Recovery of Liquid Fuel from the Aqueous Phase of Pyrolysis Oil Using Catalytic Conversion [J].
Abnisa, Faisal ;
Daud, W. M. A. Wan ;
Arami-Niya, Arash ;
Ali, Brahim Si ;
Sahu, J. N. .
ENERGY & FUELS, 2014, 28 (05) :3074-3085
[4]   Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis [J].
Abnisa, Faisal ;
Arami-Niya, Arash ;
Daud, W. M. A. Wan ;
Sahu, J. N. ;
Noor, I. M. .
ENERGY CONVERSION AND MANAGEMENT, 2013, 76 :1073-1082
[5]   Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes [J].
Abnisa, Faisal ;
Arami-Niya, Arash ;
Daud, W. M. A. Wan ;
Sahu, J. N. .
BIOENERGY RESEARCH, 2013, 6 (02) :830-840
[6]   Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel [J].
Abnisa, Faisal ;
Daud, W. M. A. Wan ;
Ramalingam, Sujahta ;
Azemi, Muhamad Naqiuddin Bin M. ;
Sahu, J. N. .
FUEL, 2013, 108 :311-318
[7]   Proximate analysis based multiple regression models for higher heating value estimation of low rank coals [J].
Akkaya, Ali Volkan .
FUEL PROCESSING TECHNOLOGY, 2009, 90 (02) :165-170
[8]  
Berrueco C., 2004, THERM SCI, V8, P65
[9]   Renewable fuels and chemicals by thermal processing of biomass [J].
Bridgwater, AV .
CHEMICAL ENGINEERING JOURNAL, 2003, 91 (2-3) :87-102
[10]  
Bridgwater AV, 1993, ADV THERMOCHEMICAL B, P977